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ABSTRACT

A large variety of physical and chemical systems are characterized by the
repetition of identical units. The periodic structure of these systems allow their
handling by similar mathematical methods. It is the purpose of this thesis to
present certain techniques for the evaluation of analytic functions of matrices
associated with such systems. The method consists of Poisson-type transforma-
tions of finite sums, which lead to rapidly converging expressions for the problems
considered. Examples related to lattice dynamics and molecular orbital theory
are discussed. Certain restricted sums of perturbation theory are calculated
exactly by a method of independent interest. An extensive list of matrices arising
from diverse periodic systems, together with their eigenvalues and eigenvectors,

is presented. This extends and generalizes results in the literature.
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INTRODUCTION

There are a large variety of phenomena in physics and theoretical chemistry
which are characterized by the repetition of identical units. This type of model
arises in the stugly of lattice structure as in lattice dynamics, exciton theory,
polymer chains and other similar situations. Many of the equations which appear
in the analysis of such periodic systems have similar features, and allow sim-
plifications due to the periodicities involved.

The first one to call attention to the class of mathematical problems which
arise from periodic phenomena was Rutherford [1,2], who calculated the eigen-
vectors and eigenvalues of particular continuant and circulant matrices useful
mainly in the solution of one dimensional problems. Some of this work was con-
tinued in a mathematical context by Egervary [3]. Of course, particular problems
involving periodic structures have been solved from Bernouilli onwards. A good
deal of this work is summarized in the books by Brillouin [4] and by Parodi and
Brillouin {5]. Recently there has been some interest in this genre of problems,
as it arises from the analysis of molecular systems, [6,7].

It is the purpose of this thesis to present certain techniques for calculating
analytic functions of circulant and continuant matrices, appropriate to the solu-
tion of one- and higher-dimensional problems. In doing so we shall also extend
some of the results of Rutherford, particularly in regards to matrices character-

istic of multi-atomic problems and lattices with defects.



In Chapter I we introduce the basic equations describing the vibrational
motion of crystal lattices in the harmonic approximation and the matrices as-
sociated with particular atomic configurations are derived. These are a good
example of the type of problem arising in studies of the physics of periodic units.
The main model employed is that of a rectangular lattice with a variety of boundary
conditions. The ground work needed for the elaboration of these systems can be
useful for the treatment of models with other symmetries. The statistical me-
chanics of lattices is shown to lead naturally to the concept of function of a
matrix and the need for an explicit evaluation of its elements.

Chapter II describes problems selected from several fields (theoretical
chemistry, molecular physics, etc.) which give rise to types of matrices similar
to those discussed in Chapter I.

Chapter III presents a technique for calculating analytic functions of the
particular matrices introduced in the previous chapters. The task at hand is
shown to be the evaluation of certain finite sums. This is accomplished by a
summation method somewhat similar to the Poisson sum formula. The formalism
thus developed is then applied to several examples in one-, two- and three-
dimensions which lead to specific analytic results. The method provides a scheme
for numerical work in cases which are analytically intractable.

The systems dealt with in foregoing chapters possessed unperturbed perio-
dicities. When perturbations are introduced (such as isotopic impurities, holes,
etc.) the treatment has to be modified. Montroll and coworkers have shown [8,9]
how to evaluate sums of analytic functions of the unknown eigenfrequencies of
such systems by using matric Green's functions of the unperturbed systems.
While the same approach could be adopted here by employing the results of
Chapter III, one can instead find approximate eigenfrequencies and then evaluate

the appropriate sums of these. This procedure is illustrated in Chapter IV




where closed form expressions are found for the restricted sums of ordinary
perturbation theory, by using a method of some intrinsic interest.

In order to increase the coherence of presentation some of the lengthier
derivations have been relegated to appendices. In addition, a special appendix is
devoted to the listing of matrices which appear most frequently in applications.
This appendix contains generalizations and extensions of Rutherford's work
[1,2] and each matrix listed in it is accompanied, whenever possible, by its

eigenvalues, eigenvectors and the closed form of its characteristic polynomial.



CHAPTER 1

DYNAMICS OF A CRYSTAL LATTICE

A solid is by definition a group of atoms arranged in a regular array (lattice),
which perform small oscillations about their equilibrium positions. It is usually
assumed that the forces acting on each particle in the lattice can be derived from

a potential.

In most cases the exact form of this potential is not known and arbitrary
constants have to be introduced in the theory. On the other hand, stability con-
siderations show that the potential energy of the lattice can be expanded in a
Taylor series about the equilibrium positions, at least for temperatures below
those at which a state transition takes place. If only the first non-zero term is
retained in this expansion, the potential energy becomes a quadratic form in
the displacements of the atoms. This procedure is known as the harmonic approxi-
mation, the nomenclature referring to the fact that here the solid is regarded as
a set of coupled harmonic oscillators. The harmonic approximation describes
adequately many of the vibrational properties of a solid although it cannot explain
characteristics such as thermal expansion, temperature variation of the elastic
constants, etc. For the treatment of these phenomena higher order terms in the
series expansion have to be included in the potential energy. In this work all the

systems considered will be treated in the harmonic approximation.




The general theory of lattice vibrations is discussed in detail in several
books [10,11]; here only an outline of the theory will be given and specialization
will be made to those models for which the methods of calculation described in

Chapter III apply.

To write down the Hamiltonian for the lattice we assume for definiteness that
there are N unit cells each containing n particles. We define ro(f) and r (f)
to be the position vector at equilibrium and the actual positionvector, respectively,
of the vw-th particle in the £ -th unit cell, both related to a suitable origin of co-

ordinates. The vectors r° (f) represent the lattice sites and can be written

also in the form

ro<ﬁ) =r%(2) + () (1)
with
r°) = ’ﬁl a, + ’F’z a, + fﬁs a, (2)

where the a; are three noncoplanar vectors called the primitive translation
vectors of the crystal and the /EJ. are three integers, positive, negative or zero.
The position vector of the x-th particle in the unit cell with respect to some
origin there, is denoted above by r® (x) . All crystals the unit cells of which
contain only one particle are called Bravais crystals — other crystals are called

nonprimitive.

In the harmonic approximation the potential energy of the lattice is given by

® =0, + {var(f) @ o. <r(i) -r° (i))
2 (0w e o ) -+ ()e

. :
/6 ,){.I 0




The zero subscript above denotes evaluation at the appropriate equilibrium

position. By definition

=0 4)
0

Vr(f) ®

If we define the displacements from equilibrium by
u( AN v /E) L0 £
w/ T\ T \x (5)
and the (a, 3) component of the tensor VYV | o bY

: a,B8=1,2,3 (6)
0

£ 4 ,
% (4 0) =T (1) B (2)

then the potential energy can be written as follows:

_ 1 E £ 4 £ .
® = (I)O +5 q)aﬁ (n )t') Ve % Yg %! (7
’ﬁ}ta

2'n'p
This is a quadratic surface in 3Nn dimensions and one can investigate its in-
variance properties under a variety of transformations. This will not be done
here as it is excellently presented in [11]. We want to remark that while
important, these invariance properties pertain mostly to infinite lattices and
lattices with boundaries which have been removed by use of the Born-von Karman

cyclic constraints.

The coefficient of @ 8 (;{;’ ')E',) is the force exertedinthe a-direction on the par-

I

ticle at ro(f) when the particle at r? (’){:’,) is displaced a unit distance in the

B -direction, and from eq. (6) we see that



LA\ 2 4
() o (2)

If the potential energy consists only of two-body interactions, with each pair
of particles interacting via a potential function &, (r) which depends only on

the magnitude of their separation, the atomic force constants will take the form:

LA 32
Z —— ' 9
q)aﬁ (K %’> axa axﬁ ¢KK r=l'(/{)’) -r </€‘) ( )

b ){'

The number of particle species is at most equal to the number of particles
in the unit cell. Therefore M,, x=1,...,n, will denote the mass of the x -th

particle in the unit cell, and we can write the equations of motion
. (4 E £ 4 4’
M, u, (K) = - (baﬁ <x x'> ug (n') (10)

There are two different approaches usually adopted for solving these equations:

1. The Plane-Wave Method

If in egs.(10) one proceeds to the limit of an elastic continuum, one obtains
a wave equation for the displacement vector of an arbitrary point in the medium.
An expansion of the displacement in plane waves of the type exp {27ik-r-iwt}
leads in most cases to a solution of the problem, the amplitudes being determined

from the boundary conditions.

This treatment of the wave equation suggests a similar procedure for the

discrete crystal lattice. If we make the substitution

U’a <f) = /;_x v (n) exp [-iwt 4+ 271 k- r®(D)] (11)




where r(?) is as in eq. (2), k is a three-dimensional vector to be subsequently

determined from boundary conditions, and v, (x) is independent of 4, we find

«?v, (1) = Z Dfﬁ (K';) vg (") (12)

[ 4

La:

where

D;ﬁﬁ( ",) L), ({ ’ﬁ:) exp (2mik- [0(2) ~e2()]}  (13)
o) T A %

oo Pl

If one can at this point make the quantities p defined in eq. (13) independent
of 4, then a considerable reduction of the problem is achieved. To this end specific
assumptions about the second order force constants have to be made: either the
lattice is infinite and its periodicity insures invariance under rigid body trans-
lations produced by a lattice vector r°(£) , or it is finite with periodic boundary

conditions. Both cases lead to the relations

14 -4
q’a.,B (K nl) :q)aﬁ (){ }t') (14)

1.e., the atomic force constants depend only on the difference 4 - 4'.

This being the case the superscript £ can be suppressed in egs. (12) and (13)

Thus eq. (12) can be rewritten

' k
2 - D ' (15
w? v, (1) Z o () v )
A
with
D k = z i) ( {) exp [-27i k. r%(D)] (16)
af ){K' { af MX'



Therefore there are only 3n equations instead of 3Nn or an infinite number of
them. The set of equations (15) will have a solution if the determinant of the co-

efficients will vanish

k 2 .
D, (“,> —a? 8,5 8,0 =0 (17)

It is easily seen from the definition (16) that the matrix of the coefficients D
is Hermitian. The 3n solutions w,? (k) are then real and the stability of the lattice

requires that these be positive.

To a certain extent the reduction effected above is illusory since the vectors
k which satisfy the boundary conditions for a finite lattice have still to be found.
This brings us back to the original problem. For an infinite lattice the 3r functions

wJ? (k) can be regarded as the branches of a multivalued function w?(k).

The plane-wave method is indispensable in all those cases for which the
normal mode frequencies cannot be explicitly found. Moreover it is the starting
point of the quantum-mechanical treatment of solids, scattering of waves and

particles, etc.

2. The Normal Mode Method

In this method the following substitution

w (1) =u, (1) e (18)
X A

is used in eq. (10) to yield

woro ()= 20 e () w (i) =0 o




The condition that the set of equations (19) have a nontrivial solution is

A
(Da.ﬁ ( ) "M){. a? B’Y/ﬁ' SKK: 5a/3 =0 (20)

LA 4

The roots of this equation are the normal mode frequencies of the crystal. The
3Nn X 3Nnsymmetric matrix in eq. (20) is known as the dynamical matrix of the
system, usually denoted by A(«?) or simply A. The boundary conditions are
automatically introduced through the specific form of the dynamical matrix.
Generally, if the roots of eq. (20) cannot be found analytically, the numerical
solution is more complicated that that of the reduced eq. (17) and this approach
is not useful. But if one considers short-range interactions (i.e., interactions
between distant neighbors can be neglected) and certain simple boundary condi-

tions, there exist several models which possess explicit analytic solutions.

It is this latter aspect of the normal mode method which will be utilized
exclusively in the sequel. We wish to emphasize that the application of the plane
wave method to these soluble models, though possible, is much less convenient

than that of the present method.

Before we proceed to the actual models, a further question has to be answered:
how to connect the atomic force constants with the geometrical and physical struc-
ture of a given lattice. It readily appears that knowledge of the invariance proper-
ties of @ is not sufficient for this purpose. If we restrict the discussion to two-
body interactions, a more physical approach is through the forces acting between
pairs of particles. This approach has been used by Born [10] and subsequently

amplifiedby de Launay [12], whose treatment we follow.

Let 5(;% ;E',) be the force exerted on the particle located at (£,x) by the

particle located at ({', x'). Then by definition

11



() -+ 1€ -+
X oy' ®y' y! n
where @ is the 3 X 3 matrix with elements given by eq. (9), and we see that

is also a force density tensor possessing only 6 independent components.

The procedure of de Launay is essentially to write for ¢ a linear combination

of dyadics
®<{{) —aee +a" €€ +a"nn (22)
H oy
where
. - <£ £'>
a, &, a =a,a, a .
ARA
and

,(J/ ]
e (1)

One of the three unit vectors, say ¢, is chosen as follows

= (23)

while the remaining two are taken to form with ¢ a right-handed orthogonal
triad. There are not enough conditions to make the choice of these two unique
and therefore a certain degree of arbitrariness remains. Despite this fact, it

is not difficult to choose these vectors for actual models, as will be described

below.

12




The coefficients o and a’, o” are known as the central force and non-central
force constants, respectively. These depend on the type of the two—body inter-
action and also on the separation distance — the constants will vary for different

neighbors even when the same type of interaction is involved.

In the following we present the equations of motion and the dynamical matrices

for several models of finite lattices in one, two, and three dimensions.

1.1 One-Dimensional Lattices

In this section we shall discuss finite linear chains and classify these according

to their symmetries and the boundary conditions imposed.

The model assumed is that of N particles M,M,,...,M arrangedona
line and constrained to vibrate longitudinally, as in Fig. 1. The equilibrium

positions x? obey the conditions

X,y -x;=a;: j=1,...,N-1 (24)
-~ = &> o
M, M, My
Figure 1

where the a’.'s denote the spacing constants of the linear lattice. If none of the

a, 's coincide there will be N(N - 1) /2 independent force constants. This case

is of no interest here since no periodicity is involved. We consider below the
case where the two-body interactions are independent of the particle masses and
assume that the particles, at equilibrium, are equidistantly spaced. Then the
number of independent force constants reduces to N - 1. According to our model
the tensor ¢ of eq. (22) reduces in this case to one constant a(£, £’) since ee¢
becomes 1. Moreover the properties of the two-body interaction assumed lead to

force constants a with the property
13



a4, 4y a4 -A'D=a; j=1,...,N-1 ’ (25)

In order to write down the dynamical matrix the boundary conditions have to

be explicitly introduced. This is done below.

1.1.1 Linear Chains with Free Ends

The forces acting on the two end particles M, and M,, according to eqs. (21)

and (25) are respectively:

N-1 W
F1 = % a, (uJ+1 - ul)
=1
\ (26)
N-1
FN = E ay-; (u’ - uN)
i=1
J
Then the dynamical matrix is
2
Al —le, —aly ) -aN—l
: s
2 N
%1 A, - M, S '
[EEAN \ N .
t N\ \ \
AN(Q)Z) = 1 \ \\ N < ! (27)
; \\ N \\:
| N N
l s A Myt ey
i N
GN‘_I ..... -y, A —MNo.)2
in which
N~j i-1 A
AJ = al‘ + ; ar; ) = 21 3 N - l
r=] r=1
g (28)
N-1
A1 = ; ar
r=l 14 D,




The eigenvalues and eigenvectors of the matrix (27) are in general unknown.
But if the chain is monatomic Mj =M, j=1,...,N, one eigenvalue is zero and

its associated eigenvector is

U =| . (29)

This of course reflects the invariance of the lattice against rigid translations and
as a result in matrix theory it is a particular case of the somewhat more general

theorem: If the sums of the elements in each row (column) of a matrix coincide,

the matrix has one eigenvalue equal to this sum and the associated eigenvector

is that of eq. (29).

A monatomic chain for which all interactions can be neglected except those

between nearest neighbors yields a matrix A of the form

a+b b
\

AN(w2) = \ AN (30)

with

a:2al—Ma)2; b=-a (31)

This matrix appears in eq. (63) of Appendix E and is discussed there. Use

of eq. (31) above gives then the frequencies

15



2 =—sin2™. r-0,1,...,N-1 (32)

The eigenvectors are presented in the same Appendix.

A monatomic chain with two distinct spacing constants a, and a, regularly
alternating is characterized, for nearest neighbor interactions, by two different

force constants 3, y and leads to the matrix

a+c b
0
b a €
NN
_ AN 33
\ \
0 \ a b
\
b a+b
in which
a=B+y-M? b==-p; c=-v (34)

and b, c alternate regularly along the minor diagonals in eq. (33).

This type of matrix is treated in the section following eq. (79') of Appendix
E. It is shown there that if N = 2n then the eigenvalues and eigenvectors can

be found explicitly. Using eq. (34) we obtain the frequencies

B+ vyt ‘/,82+2,87c05—715+')/2

wE: v n s r:l,...,n—l

2 =0 (35)
2(

©m T W

16




The frequencies wg and wz"’n coincide, for 8, ¥ - a, , with the two frequencies
of eq. (32) obtained by the substitution of r = 0 and r = N/2, respectively. We
note also that the frequency “’22;-. is independent of the number of particles. As
such it is called a "surface' frequency, a term borrowed from the theory of an
elastic continuum with free boundaries. At present no analytic results are

available for the odd case N = 2n + 1,

The diatomic chain with nearest neighbor interactions and masses alter-

nating regularly along the chain has the dynamical matrix

u+b b\
\ 0
b v N
\ \
\
A (a?) = Noou (36)
N \ N
\ \ b
0 \ \
\ \
b *
in which
u:2al-M1w2; v =2a, -Mzwz; b=-a (37)

and the last term on the main diagonal is either u + b (for N odd) or v + b (for
N even). As the odd case does not possess at present analytic solutions, we
consider only N = 2n. Then the eigenvalues and eigenvectors are given in eqs.

(99), (101) and (102), (103) of Appendix E and we can write the frequencies

\
27Tk
M, + M, t ‘Aal_mz)hmulmz cos? 7=
wi:al M
Ml 2
k=1, ,n-=1 L
(38)
w2 =0
a (M, +M,)
w2n M. M
172 J
17




Again a;22n is the "surface" frequency and as in the previous case there are

two frequency branches or bands corresponding to the + signs in eq. (38).
For odd N, N = 2n + 1, the only information available is the dispersion
relation

usin(2n +2)8 +2vuvsin(2n +1) 8 + vsin2n 4
sin 26

=0 (39)

in which vuv = 2b cos . This is of course the characteristic equation of the

matrix in eq. (36) and can be put in the form

(Vi sin (n+1) 6 + /v sin (n®)} {Vucos (n+1) 6+ Vv cosn6} =0 (40)

which exhibits the existence of two frequency branches also in this case.

1.1.2 Linear Chain with Fixed Ends

Here again we assume mass-independent interactions and equidistant spacing
of the equilibrium sites (unless specified otherwise). The two end particles are
supposed to interact with rigid walls via the same force constants employed through-
out the chain. Though more realistic, the inclusion of different force constants
for the end particles will render the problem tractable only be perturbation

methods. We restrict therefore the discussion to the former situation.

The dynamical matrix for the polyatomic case is

2
Al —-le , —al,\ ..... —a.N_l
2 |
-a, A2 - M2 w? ™\ N |
AN N N |
A (?) = AN N < | (41)
i N\ N - a
] N N 1
I \ N
2
~ a‘N,.ly D al, AN - MN W

18




in which

(
N—-1
E a. + a,; r=1, N

3 1
ji=1
_ 4
A, = < (42)

N-r r~1
E a + E a; r=2, , N-1
i=1 3=

N

As for a chain with free ends, the polyatomic case cannot be treated analyti-
cally. The cases for which closed analytic expressions of the eigenfrequencies

are available will be listed below.

The monatomic chain with nearest neighbor interactions only, has the dynami-

cal matrix
a b
NN 0
AN
b AN
ANEEAN
W EEANANAN (43)
NN N
v \ b
0 \ \
a
with
a:2al—Mw2; b=-a (44)

Using eq. (44) and the result (10) of Appendix E, we obtain the frequencies

4q
1. 7T
w? = — sin? —— r=1,...,N

M 2(N + 1)’

The eigenvectors are exhibited in eq. (12) of the Appendix.

19



The inclusion of interactions among more distant neighbors in the dynamical
matrix makes the problem of calculating the eigenvalues analytically extremely

difficult, and all efforts in this direction have been so far unsuccessful.

The diatomic chain, with particles M, and M, alternating regularly along
the chain, can be regarded for N = 2n as a lattice with a basis the unit cell of
which contains two particles of different species. Because of the simplicity of

the situation, one can disregard this feature and proceed directly.

For equidistant spacing and mass-independent interactions, the dynamical

matrix is
u b\
\ 0
b v
AN \\
(o?) = NN
ot NN (45)
N\ \ b
0 NN
\b \*
in which
u:2a1—le2; v=2a -M, w? (46)

and the last element on the main diagonal is either u (for N odd) or v (for N even).
The eqs. (36) and (42) of Appendix E show, on using eq. (46) above, that the

frequencies for these two cases are given by:

B W S IF VIR VI M, =M)2 + 4M, M 2 _ 7k
kK MM 1 TV p — M7+ AN M, cos n 5 1

(47)

20




S S FYRRNE TR VR PR Ty 2__mk
| “k MM 1M, 2 Y M -M)® + 4M M, cos %0 1 2
| 172
k=tioom - @)
) —2a1
. w2n+1"ﬁl_
J

The dynamical matrix for a diatomic chain with two different spacing constants

similarly alternating is

u b
0
b v ¢
NN
\\ \\
B,sy (&) = NN (49)
\ \ \
‘b v ¢
0
c u
in which
U:IB+7—M10)2; V=,3+7—M2w2; b==-8; c==-v (50)

and 8, y are the two different force constants between nearest neighbors. Egs.

(56) and (59) of Appendix E show the frequencies to be

: . 7k
w: T oMM [(Ber) M, + M) ¢ ‘/(B+7)2 L +M2)2 -16 SyM M, sin? 2n + 2 :|
172
k=1, . n >
2 _B+y
“2nt1 T Y
1
J
(51)

21



Here again we observe the separation of the frequencies into two distinct
branches. If this type of diatomic chain consists of an even number of particles,

N = 2n, exact results are no longer available.

1.1.3 Linear Chain with Periodic Boundary Conditions

The chain is assumed here to form a closed loop. This means that there are
no end particles and the interactions proceed along the shorter separation dis-
tances on the loop. Use of the forces defined in eq. (21) with mass independence

and the assumption of equidistant spacing, yield for the polyatomic case the dynami-

cal matrix

.
diag(A-lez, A-Mzwz, cee, A_MNa)z) -(aq o0 a ;- .al)cyc.
N=2n
AN(w2) :ﬁ (52)
diag (A-lez, A—M2w2, R A-MNwz) -(ao,.--a a a _, .. .al)cyc
L N=2n+1
in which diag (** . . . *) denotes a diagonal matrix with the elements specified in

parantheses, and (¥*. .. *)CYC- denotes a matrix the first row of which consists
of the specified elements *, the other rows being obtained from the first by

(counter-clockwise) cyclic permutations. Also

n=1
2 % a; + ayi N = 2n
71

A =< (53)

22




We note that the number of independent force constants is here reduced to

either N /2 or (N - 1)/2.

In contrast to previous cases, the frequencies and eigenvectors of the monatomic
chain are known explicitly for the general case and can be given from egs. (153)

and (154) of Appendix E as follows:

(
n-1
4 .27Tkj an . k
X . —_—t—1{1=(-1
MZalsm 2n+M[ (-1)*]
i=1
k=0,1,-*,2n-1; N=2n
wl =< (54)
id a. sin? LS
Mz: ) 2n +1
i=1
k=0,1, -+, 2n; N=2n +1

.
It is seen that one frequency (k =0) vanishes just as for a chain with free ends.
The frequencies and eigenvectors of a diatomic chain with an even number of

particles can also be found. Using the eqs. (135) and (140) of Appendix E, we

find the frequencies

(M1+M2)2 M, -M, 2
o s | QR Q2087 e4 () 0k,
172

1 2

*

k=0, -+, n-1 (55)

*
The corresponding result in the literature is given only for nearest neighbors interactions and is
not as transparent as the above.
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in which

n—-1 *
2.__ 2 4E a sint 27 Lo [1-(=1)7)
F M, +M,
i=1
r=0,-+,2n-1 (56)

It is of interest to note that when the odd-indexed a's vanish, the radical in
eq. (55) disappears and a decoupling of the motion takes place, i.e., the resulting

frequencies are those of two separate loops with particles M, and M, respectively.

Here also the diatomic chain with an odd number of particles cannot be solved

analytically.

Other situations can be also treated exactly. For instance if, everything being
as before, we introduce two distinct spacing constants, as in Fig. 2, the dynamical

matrix for a chain with only nearest neighbor interactions, will be

b v c (u)
\ \ \ !
\ \ \ i
) 0\ \ \ 0
By, @5 =1 N NN (57)
1 \ \ C
1 \ \
1 \ \
0 c u b
0
c 0--0.b _ v
in which
u=B+y-Mw?;v=L8+y-M,w?; b=-8;c=-y (58)

*
These are just the frequencies for a monatomic chain with particle mass(M; +M,)/2.
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On using (58) above and eq. (161) of Appendix E we find the frequencies

2 1

. k
TN [(B +7) My +My) 2 /(B+7)2 M +M,)? - 16 By M, M, sin? T2 }

k=0,""",n-1 (59)

1.2 Two-Dimensional Lattices

The plane lattices to be considered in this section will be rectangular. The
model assumed is shown in Fig. 3: the unit cell is based on the vectors a, =
a, i; a, =a, j,where i, j are the unit vectors in the x- and y- directions,

respectively. We assume the lattice to consist of N, horizontal rows equidistantly

separated, with N , barticles equidistantly spaced in each row.

The discussion will be restricted here to at most eight neighbors (for parti-
cles not on the boundary). For instance, the particle located at the site a, +a,

is assumed to interact via two-body forces only with the particles at the sites
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0 (this is labeled 1 in Fig. 3), a;, 2a,, a,,2a,, 2a, +a,, a, +2a, and 2(a; + a,).
For these sites to represent indeed the first, second and third neighbors, we have

to assume

1
a a. > 2 2
10 8 75 Y818z

The particles will be constrained to vibrate only in the plane of the lattice.

The force density tensor @ will then be that of eq. (22), with " suppressed.

The eight unit vectors ¢« needed in eq. (22), and their counterparts §, are given

here by
\
&g -y =1 €1=-8,=1
E3 T "€ 7 J §3=-8,=-1
_ 8y tay ~ s & (60)
Bg =~ &g = —— §s=-8g =—F——
2, .2 2, .2
ai+aj at+aj
€, = - -8, + 8, _ _ a, +a,
aj+aj aj+aj )

Though immaterial in the two-dimensional case, we have used here the convention

that angles between unit vectors are measured counter-clockwise from ¢ to §.

There are three central and three noncentral force constants associated with

the unit vectors of (60), in the following manner

{e, e, a s {eg et =a,; {eg,eg. e, 803 = ay (61)
and similar relations for §¢ with o' .

We consider below different boundary conditions.

1.2.1 Plane Lattice with Free Boundaries

The equations of motion and the dynamical matrix are found in Appendix A.

Here we quote the results.
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A monatomic lattice has the dynamical matrix

F
N \
G \
\ v 0
VoY
N (62)
2y - \ AN
A (&%) = \ N
o\ \ \\
\' F ¢
\
\’\;
G F”
in which
A, B\ A, B
\ \
AN
\
' "\ A\2 \ B A
F' = \ \ \\ : F" = \ \ \
N\ ‘\ \ \ v N
\ X, B N\ A, \B
\ \ 2
N\
B A, VB A,
NIXNI NIXN1
A, B cCD
N AN
\ ANDN
B\A AN E N
— \ - —
F= AN \\\ P 6= \\\\
NN \ NN
N A \B \\ \ D
\
B A
VN, x Ny E ¢ Ny X Ny

where G denotes the transpose of 6,and A, ,A,, ..., E are defined in egs. (6)

and (7) of Appendix A.

Two eigenfrequencies can be seen from the equations of motion to vanish,
corresponding of course to a rigid translation of the lattice. The two independent

eigenvectors for this case are obtained when putting in turn
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1 1
Vg ;U{,m:<_1> (64)

for all (£,m), withU defined in eq. (4) of Appendix A.

The remaining eigenfrequencies cannot be found analytically in the general
case. But if next-nearest neighbor interactions are neglected, then the following
simplifications take place

D:E:O;A1:A+B;A2:A+C;A3:A4:A+B+C (65)
and
6=6G; F'=F"=F+6 (66)
Note that for this case the motions of the atoms in the x- and y-direction are

independent.

Using (65), the dynamical matrix simplifies to

F+G6 G
N\
\
\
G\ F\ \
A (2) = NN\ (67)
2N, N, \ AN
NN
. F 6
\\
G F+6G

As F and G are now commuting matrices, we can use eq. (203) of Appendix E

and the definitions of the 2 X 2 matrices A, B, C to write the frequencies:

[w‘((_l)] 2_4a sin?2 k& +4— sin? j ¢
j M M k=0,- ’Nl"l
> (68)
, j=0,-++, N, -1
{wmr:‘i& sin2 ko + 38 sin? j ¢ i
kj M M
J

in which ¢ = 7/2N;; ¢ = 7 /2N,.
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It is seen therefore that a rectangular plane lattice, in this model, has 2N; N, -1
distinct normal frequencies. This property persists even for the case N; =N,
or when the unit cell is a square (for which a=£8 and a’ = /3). On the other
hand, if N, =N, and the unit cell is square, the number of distinct frequencies

is reduced to N, N, , each being doubly degenerate.

It is not difficult now to write down the dynamical matrix for the diatomic
lattice. In addition to the two masses one has to take into account the three types

of interaction possible:

M~M, ; M~M, ;MM
The case MM, corresponds here to nearest neighbors and the other two to
next nearest neighbors. Since we cannot find the eigenvalues for more distant
neighbors even in the monatomic case, we shall restrict the discussion to nearest
neighbors interactions. The dynamical matrix for this case is given then essentially

by eq. (67), with the following modifications: 1. The 2 x 2-A matrices alternate

regularly along the main diagonal of F¢ J:

A 4+ B B\
(2) \
B\A\ \ 0
Foo= [\ Y \ (69)
v \
. 0\ \\ B
oo
B AC)+B
in which
\
2(a + B') - M w? 0
A(l) =
0 2(a’ + fB) - M, w? .
2(a +8') - M,w? 0
A(z) =
0 2@ +8) -M,w?
Py
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and

B AW\ 0
\ \ \
F(2) = \\ AN \\ (71)
\ \
0\ \ B
\ \
\ \
B A(O*B
The dynamical matrix has the form
FO+6 6
\
¢ F
\ N
2 \ \ N\
A (@?) = \\ NN (72)
\ \
0 N \ G
\\ \
G F() +6

where the matrices F(1), F(?) alternate regularly along the main diagonal.

Though certain reductions of the dynamical matrix in eq. (72) are possible,

analytic expressions for the frequencies cannot be found.

[ ] L] [ ] [ ]

(o} o (o] o}
\

[ ] [ ] ® [ J

Figure 4. o —-Ml;o —»Mz

On the otherhand if we consider the lattice shown in Fig. 4, which consists of

alternating rows of two types of particles M,,M,, and assume N, =2n,, the dynami-

cal matrix will have the form
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\
A (@) = G ED\ O (73)

in which F(!) and F(?) alternate along the main diagonal of A and

AGY4+B B
\
B KON
N\ \ \
FG) = AN i =12 (74)
\ \ \
\
0 N\ . B
\ N .
B AG) 4B

The matrices A(1), A(2) B and 6 are as defined previously. As F(1),
F() and G are commuting in pairs, it is shown in Appendix E that the eigen-
values of A can be found. Using then eq. (209) of that Appendix, we obtain two

groups of frequencies, each group consisting of four branches:

Group 1

2 1

i MIMZ

w

{(Ml +M,) (B +2a sin? j 6)

£ V(Ml -M)? (B +2a sin? j 6)2 4 4M1M2,B'2 cos2kcp}

1 ’ tm2 3
2 _ 6
W5 = o, {(Ml +M,) (B +2a' sin® j0)

+ ‘/(Ml--Mz)2 (B+2a' sin? j6)2 + 4M, M, B2 coszkcp} (75)
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in which
p-lik=1,0" n-1; 0= ¢g=c (76)

Group 2

w?:MlM {(M +M )(’8 + 2a sin?j ) ‘/(M —M2)2<—+ 2 a sin? 19> +M1M2ﬁ'2}

2

2
w?:Ml {(M +M )(—é—+2a sin? j ) ‘/(M -M2)2<ﬁ+2a 51r12]9> +M1M252}
172

(77)

with 6 asineq.(76)and j =0,..., N, -1.

1

The frequencies in the last group are those associated with the surface modes.

Two of these vanish (for j = 0), corresponding to rigid translations of the lattice.

1.2.2 Plane Lattice with Rigid Boundaries

Here we assume the marginal particles to interact with the rigid boundaries
via the same two-body forces operating inside the lattice. Therefore using the
same notation as before, the only equations of motion that change are those for
the marginal particles. Proceeding as in§ 1.2 of Appendix A we find the dynamical

matrix for a monatomic lattice to be of the form:

A (w?) = (78)
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in which

AB cCD
\\\\ \ O\
B E\\
\\\\\ L\
F=| “ \\ 6= M\ (79)
- \ U A\
"N \\\\
\\
B A\ D
B ‘A }a\c
NIXN1 NIXNI

and A,B, ..., E are as defined in eq. (6) of Appendix A.

Again we note that F, G ,E do not commute. This stems from the fact that
D and E do not commute with one another or with A, B. The coupling between
the motions in the x- and y-directions is given by D and E, more specifically by
the matrix element . It is clear therefore, from the expression defining &, that

13

if aj~a, ,then &~ 0 and all the 2 X 2 matrices involved become diagonal, with
D=E-= ; 6=6 (80)
Assuming the condition 8 ~ 0 to be satisfied, the motions in the x- and y-directions

become independent and the frequencies will be obtained by equating to zero the

Ay; given in eq. (175) of Appendix E, namely

A +2CcoSs 7] +2| B+2Dcos ) cos Tk =0
N2+1 N2+1 N1+l

(81)

Finally two groups of frequencies are obtained

w?. _2a 1 - cos 7k +-2—£ 1-cos 3 +iz 1-cos 7k cos —J
KoM N, +1 M N,+1) M N,+1  N,+1
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+

w&. :20" (l-cos Wk) +2—’8- (l—cos ) ) +ﬂ— (l—cos k cos 7) ) (83)
! N, +1 N +1 N +1
\ \ 2 / \ i 3 /

with k and j as in eq. (81).

We remark that the boundary conditions under consideration do not lead to
degeneracies in the spectrum, even for a lattice with a square unit cell (in which
case a =f8; a' = ). The degeneracy that exists for a square lattice (N; =N,)
with square unit cell, is removed by the introduction of the next-nearest neighbor

interactions, represented here by .

For the diatomic lattice with regular alternation of M, and M, , the changes
| 4

in the dynamical matrix are likewise obvious and we can write:

F, G_

A (02) = NN (84)

in which F, andF, alternate regularly along the main diagonal and

N
AL B A B
\ \
B AN ‘0 B Am N 0
AN N\ AN \
\\ \\ \ N N N
= \ : = N\
\ \ \
AN AN
0 \ \\ B 0 \\ . B
\ \ AN
\ N\
B MO \B MAO)
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The matrices A1), A(?) which alternate regularly in F, ,F, are as defined
in eq. (70), D and E as in eq. (80), G as in eq. (79), and B ,C as in eq. (6) of

Appendix A.

The eigenvalues of A(«?) can be found explicitly, for all parities of NN, ,
as shown in the treatment following eq. (177) of Appendix E. Here we quote re-
sults only for the case N, =2n,, and use eq. (195) in Appendix E (with A_ re-
placed by A("), r =1, 2) to write down the frequencies. These appear in four

distinct branches:

2 _

W, =
jk

Mle

{(Ml +M,) [a+8 +2y(1-cos jbcoskqy] ¢

+ }[(Ml—Mz)"’ [a+8 +2y (1 -cosjbcosky]? +4M M, [acos j@+,6"coskcp]2}
(86)

w?k: 1 {(M1+M2) @' +8+2y (1 -cos jOcosky)] ¢
M1M2

+ ‘/(MI_M2)2 [a'+8+2y (1-cosjfcoskyp)]? +4M M, [a'cosj9+Bcoskcp]?}

with

T s
» ¢ =

k=1,---.n +1 2n, +1

It is of interest to compare the frequency spectrum of this model with the one
obtained when a rearrangement of the particles has taken place. The rearrangement
envisaged is the one already considered in Fig. 4 of the previous section, namely

alternating rows of two types of particles, each row consisting of identical particles.

The dynamical matrix is (where for simplicity we assume N, =2n,):
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\\ 0
\
\
A@H={ 6 F, (87)
N N D :
NeoN \G
0 \\ \\\
AN
G F,
in which
AL B A(2) B
N\ \ 0
\ N
B A~ 0 B, A N
\ AN
AN \\ \\ N N
F. = NN N ; F, = \ N N\ (89)
1 \\ O\ 2 \ \ AN
\ \
0 \\ AN 0 \\ N\
B A B A®

and A A B |G are as in eq. (84).

The matrices F, ,F, and ¢ commute in pairs, and so do all the 2 X 2 matrices
involved. This being the case, eq. (183) of Appendix E shows the frequencies to be

the roots of the matric equations

2
M,-M 1 (2) .
w4<12 2) 12_{A();A +2Bcosj9+2[C+2[)COS_19]coskcp}x

(M (2) .
x{A__%ﬁ‘_. +2Bcos j6-2[C+2Dcos JQ]CoskCP}= 0 (90)

in which

6:—-—77—-;cp: T ;j:l,""Nl;k=11"',n2 (91)
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Finally, the frequencies we obtain, appear in four distinct branches:

w? = 1 M, +M,) [a(1-cos jO) + B +27] +
! M1M2
+ ,/<M1 -M)2 [a(l-cosjo) + 8 +2y1% +AM M, [B' +2”,vcosj9]2cosqu>}
1 . :
. ng:MIMz {(M1 +M) [@'(1-cosjb)y+B+2y ]+

+ ’/(MI—M2)2 [’ (1-cosjO)+B8+2y ]2 +4M M, [B+2y Cosj9]2coszk<p}

(92)
with k, j ,6 and ¢ as in eq. (91).

Similar expressions can be easily found also in case N, is odd.

1.2.3 Plane Lattice with Periodic Boundary Conditions

Here particles on opposite boundaries interact with one another and therefore
we can envisage the lattice particles as being located on the surface of a torus.

This means that there are no marginal particles.

One can write down the dynamical matrix taking account of all possible inter-
actions, since in fact the eigenfrequencies can be explicitly exhibited for this
general case. For the sake of simplicity and comparison with preceding results,

we consider below only nearest and next-nearest neighbor interactions.

It is not difficult to show that the dynamical matrix for the monatomic lattice is

A (@?) = Ny (93)
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‘\ \ o E \\ \ 0 DN\ o

\\ \ A \ W ~ \\ \\ \

\
F = \\ \\ \\ ; 6= \ \\\\ ; 6= \\ \\ \\ (94)

\ \
0 v AN 0\ 0\ \ .
\ \B L v \E
AR AN v
BB A/, D E C/y,y, E D C

The matrices A, . .., E are as defined in eq. (6) of Appendix A.

It is seen that A (w?) is a two-dimensional circulant matrix and that F, ¢ and
G are circulant in their elements. Then we can use eq. (216) of Appendix E to
write down the following matric equation the roots of which are the frequencies

of the system:
0=A+2Bcos j+2Ccoskp+2Dcos (kg +j6b) +
+ 2E cos (kq)—j@)fl\kj;k:O,"',Nz—l;j:0,"‘,N1-—1 (95)
inwhich 6 = 27/N;; ¢ = 27/N,.
The explicit form of the 2 X 2 matrix A, ; is

40sin? (j 6/2) + 43 sin? (k¢/2) + 4y (1 -cos jO cosko) -Mce?; 45 sinj6sinke

kj =
4 6 sin jOsinky ; 4a'sin? (j6/2) +4 Bsin? (kg/2) +4y' (1 -cos jOcos k) -M?
(96)
Finally the frequencies are given by

w2, =2 {(a +a')sin? (6/2) + (B+8 ) sin? (kg/2) +(y+Y' ) (1 -cos j& cosko) ¢

t /Rj‘al)Sinz(j 6/2)+ (B - B) sin? (kg/2) + (¥ -7 ) (1 ~cosjO coskp)]? + (28sinj Hsinkcp)2}

-1;k=0,"-+, N, -1, 6=2m/Np; ¢=27/N, (37




We note that here we obtain two branches, a result to be expected from the in-
clusion of next-nearest neighbor interactions. If § is negligible, then the x- and
y-motions are independent and the frequency spectrum reduces to one branch

only. We observe that for j = k = 0 we obtain a vanishing, doubly degenerate

frequency.

When we consider the diatomic lattice the only solvable case is when both N,

and N, are even. Then, if N, =2n,, N, =2n,, the dynamical matrix takes the form:

F, G, G
\
Pl \
G\ F, \\ 0
\ 98
A(w?) = NV )
VN N
O N F, 6
\’\J
G G F

NN,

in which G and ¢ are as for the monatomic case, while

A B B A B B
N0 \. o
B, AN B A N
N NN \\ AN \
— \ \ . =
F, = NN F, R (99)
O N an B 0\ A® B
\ \
B B A B ‘B A

and A1), A(?) as in eq. (84).

The matrices F, , F, and 6 do not commute. Therefore the appropriate
treatment is that preceding eq. (241) of Appendix E where it is shown that
A(w?) is reducible to two types of block matrices on the main diagonal. These
matrices denoted K(°) and K(!) ineq. (241), become here 4 X 4 matrices.

These matrices cannot be further simplified and the resulting equations are of
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the fourth degree in w2, Hence, for this model, we obtain eight frequency branches.
Analytic expressions for the frequencies can be found only for 4(N, + N, - 2)
of them — corresponding to the cases for which the coefficients of the coupling
parameter § vanish, making all the 2 X 2 matrices diégonal. Below we exhibit

the 2N N, frequencies obtained when § is dropped from the start:

MM

wzkj = 1 {(M1 +M,) [a+B +2y (1 -cos jOcoskop)] ¢
172

t /&1 -M)? [a 4 B +2y(1-cos j& coskp)]? + 4M,M, [a cos j & + B'cos kcp)]z}

(100)
wlfj = M11M2 {(M1 + M2) [a’ + B +2y (1 —=cos jBcos ko] ¢
+ /(Ml—Mz)z la' +8+2y (1 -cosjbcoske)]? +4M M, [a’' cos j & + Boos ko] 2}
(101)
wlz(j -1 {(Ml +M,)) [a + B8 +2y (1 + cos jO cos ko))
M, M,
+ /(Ml —M2)2 la+B' +2y(1 +cosjOcoskp)]? +4M M, [acos j6-pa' cosk(p]2}
(102)
1 P .
wlfj :M1M2 {(Ml +M2) [a" + B+2y (1 +cos jBcoskp)] t

+ /(MI—M2)2 [ +B8+2y (1 +cosj9c0skcp)]2+4M1M2 [a' cosj@-ﬁcoskq;P}
(103)

In the last four expressions we have
1-1; k:O,...,nz—l; 9:77/n1; cp:77/n2 (104)

The 4 (N, + N, - 2) frequencies mentioned previously can be obtained from
ed. (100) - (102) by letting j and k take in turn the value 0. Two frequencies,

obtained from egs. (100) and (101) for k = j = 0, vanish.
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1.3 Three-Dimensional Lattices

In this section we consider a rectangular space lattice. The model assumed

is shown in Fig. 5. The unit cell is based on the vectors a, = axi’ a, = azj;

a, = a3k » where i, j, k are unit vectors in the x-, y- and z-directions, respectively.
We further assume the lattice to consist of N, particles in each row parallel to
the x-axis, N, and N3 particles in rows parallel to the y- and z-axes, respectively.

z

[

e
Peer e v

N\

- 1

2% s aipa

A\

E /f ﬁ/bf: /E o
Ny+1 Jé % E :T(N3+1)
1 2 NN, +1 /C/‘/

1 ! 2 3 N,

\

X

N

Figure 5

No constraints are imposed here on the vibrations of the particles and hence
the force tensor ¢ will be used in the form given by eq. (22). The discussion
will include 26 immediate neighbors,located at the vertices of 8 unit cells. For
these to represent first, second and third neighbors, certain not too stringent

conditions have to be imposed on the relative values of a, a and a;.

2
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As before, the two-body interactions considered are assumed to be

mass-independent.

The unit vectors ¢, &, n and the force constants associated with the twenty-

six neighbors are exhibited in section 2 of Appendix A.

1.3.1 Lattice with Free Boundaries

Following the procedure described in Appendix A, the dynamical matrix for
the monatomic lattice could be written down so as to include all the neighbors
considered in the present model. Since such generality precludes an exact
solution for the frequencies, the discussion below will be restricted to the case

of nearest neighbors interactions. The dynamical matrix for this case is:

S+T T,
\ 0
T S O
\ \ \\
A(e?) = DN (105)
\ \ \\

T S+T NN,
in which
F+G6 G H
\ \
G F \\ 0 \
\ \ \ 0
\ N \
S = v N N ; T= \ (106)
\ NN \
o \ F 6 \
\ 0 \
G F+G N <N, H N XNy
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and

A+B, B B, B,

N o0 V0

1 \ \ \

\\ \\ N \ \

\ \ \
A B
0 \\ 1 0 \ 0 \\
B A+By NNy B; N xN, B, N xN

The matrices B_ are as in egs. (12) of Appendix A and A as in eq. (18) of the

same, with all C_ and D_ suppressed. All the 3 X 3 matrices involved are now

diagonal.

The frequencies can be found immediately on using eq. (268) of Appendix E:

’

a, sin? j6 + a’ sin? ko + ay sin? ry

1 2

4 . .
2 =—<d a sin?jf+a

@ikr M 1 sin ko + a; sin? ry (108)

2
aj sin? j6 4 a) sin? ko + a, sin? ry

in which
i=0,...,N

(109)
6 =m/2N;; @ =7m/2N,; Jp=7m/2N,

The zero frequency w,,, is triply degenerate, while the rest are distinct.
These frequencies will remain distinct even for a cubic unit cell, if at least one
dimension (N, ) of the lattice is different from the other two. For a cubic lattice
with a cubic unit cell all the frequencies (108) become triply degenerate in this

approximation.

The dynamical matrix for the diatomic lattice can be readily written down,
but as in the corresponding plane lattice the frequencies cannot be found exactly.

Here we mention only that exact solutions exist for a lattice composed of alternating
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planes of two particle-species, each plane containing like particles. In the approxi-
mation of nearest neighbors, this type of lattice possesses twelve distinct frequency

branches.

1.3.2 Lattice with Rigid Boundaries

The dynamical matrix for the monatomic lattice can be written down when
interactions up to third neighbors are included, but the frequencies of the system
cannot be found analytically. Therefore we restrict the discussion to the following
soluble case: 1. Third order neighbors are neglected; 2. The off-diagonal elements
of the matrices C_ defined in Appendix A are dropped. This last requirement is

equivalent to assuming ,Bj A B; ;0 =1,2,3.

Assuming these conditions to be satisfied, the dynamical matrix becomes

S T\
\
T\ \
\ \
A = | N N (110)
\\ \
v VT
AN
v
T S
N2><N2
with
F\G\ H K
0 AN 0
¢\ \\ K\ A
\\\ \ NEANEEN
S = AN : T= NN (111)
\\ G NN N
o Ny K
v 0\
G'F K H
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3 73 0 2 ™ 5
\ \\ NN 0 \ 0
C,\ N\ C,\ \
VN vV \
G = NN . H-= v\ D . K= \
\\ \\ C, v \C \
0 \ o M\ 0\
\ \ v\
C3 B3 Cl B2 CS
and
A B
B, \
A
F- RS (112)
AREAN B,
o \ \
\
B, A

Here the matrices B, are as in eq. (12) of Appendix A while according to

requirement (2) above we obtain

\
G =€, =-diag (B £ B)
C,=C, = -diag (5, By By > (113)
CS = C6 = -diag (ﬁ; 53 53)

J

and

A =diag {2 [a1 +a, + a; +2(B; + B, +,8§)] - Mo?; 2[a{ +a, +ag +2(8, + 5, +,83)]'_Mw2;

2[af +ay + oy +2(8) + B+ By] - M} (114)

On using eq. (244) of Appendix E the frequencies can be written down

immediately:
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e ,
a, sin? i0+ o] sin?ko ¢ aj sin? ry+fB(1-cos2jfcos 2k o)

+ B,(1 -cos2j6 cos2ry) +55 (1 -cos 2kg cos 2ry)

a!sin?jf+a, sin?ky + a” sin?ry+83 (1 -cos 2j0cos 2kq)
, _4) ] 2 3 vih (115)

W =
kr M + By(1-cos2j60 cos2ry) + B;(1-cos 2k cosry)
a’l’ sin? jO 4+ a; sin?ko + a, sin? rxp+,8;’(1 -cos 2j6 cos 2ko)
k +B,(1 ~cos2j6 cos 2ry) + B;(1 -cos 2kg cos 2ry)
in which
j=1,. ,Nl;kzl,...,N2;r:l,...,N3;t9:—-ZT—-——; Q= 7 s = m . (116)
2N, + 1) 2(N, +1) 2(N, +1)

If instead of neglecting the third neighbors interactions entirely we assume

the force constants to be nearly equal,

NSRVINY. (117)

then all the matrices D defined in Appendix A become equal to -y I. The fre-

quencies for this case can again be found and will be as given in eq. (115), to

each being added the term

2v(1 -~ cos 2j0 cos 2kpcos 2ry). (118)

Whether this term is added or not, we see that this model posses three distinct
frequency branches, a property that persists for a lattice with cubic unit cell.

On the other hand if such a lattice is cubic (i.e., N, = N, = N;) the frequencies

become triply degenerate.

We consider now a diatomic lattice and shall assume the arrangement to be

such that no two adjacent particles are alike. Then the dynamical matrix reads:
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T 82 v 0
\\ Y
aeh =1 N\ | N, = 2n, (119)
\ \
T 2
NN,
in which
\
F, G\ K G\
\ \
(3 [‘;2 \ 0 (i l\?l \\ 0
- \ \ _ \ AV
Sl = \ \\ \\ ; S2 = \ v ; N3 = 2n3
0 \\ \ 6 oy Y §
\ v
\ \ \ \
G F2 G F1
N3N Na*Ns > (120)
Al Bl Az Bl
\ \
B AL \
W V2 l\ll A 0
_ \ v . _ \ v N _
F, = \ \ \0 ;s Fy = \ N s Ny = 2n)
\ ANAY \ v
0\ \ Bl Y \ \ Bl
\ \ \ \\
Bl Az Bl A J
Ny*Ny N *N,

The matrices S, , F , A (i=1, 2) alternate regularly along the main
diagonals of the appropriate matrices. G and T are as in eq. (111), while A, is
as given in eq. (114) with M replacedby M., i =1, 2. We have chosen N> N,
N;, to be all even only to simplify the presentation, but in fact all possible choices

lead, in this model, to exact solutions.
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The frequencies of the system can be obtained by equating to zero the A?
y jkr

in eq. (265) of Appendix E and solving for »2. Here we make use from the
start of eq. (117) to include the third neighbors interactions. For brevity, we

present the frequencies «? as elements of a 3 x 3 diagonal matrix jSkr s

1
Q. = — {- M, + M) Pt Y (M -M)2PE 4N M, QP } (121)
1772

in which
ijr =B, +B, + B, + 2C, (1 - cos jOcosko)+2C,(1 - cos jO cos ry)
+2C,(1 - coskogcosry) - yI(1 - cosj B coskpcos ry) (122)

Q=B cos jo +B,cosko+Bcosry. (123)

All of the matrices appearing above are as in the monatomic case. On the

other hand, we have here

j:l,...,2n1;k:1,...,n2;r:1,...,2n3;5: c = .
N, +1 N,+1 N,+1

Eq. (122) shows the existence in this model, of six distinct frequency branches.

1.3.3 Lattice With Periodic Boundaries

The dynamical matrix for the monatomic lattice to be displayed here contains

all the interactions assumed in the model.

AN
AN (123)
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in which

0\ 6 0 \\VK
\ \ \ N
G G F K L n N,
3
A B B, B, ¢, C,
AN
BN \ o NN
\ \ NNy
Bl \ 3 6= \\ ‘N
\ \
\ NN
B, B A N, i G, By/y,
56 G C, D, D, c, b, D,
\ AN AR
2 N\ D\ D,\ \ o
B=| NN K= N\ L N
= \ \ \\ y = \ \ \\ ’ \ \ \
v e \ N b \ N\ p
o \ 1 o \ \ 1 0\ \ ¢
\ \ \ AN
G G By /y, D, D, G/ D, D, G/y,

All of the matrices A,B,,...,D, are as defined in §2 of Appendix A.

The frequencies are obtained by equating to zero the determinant of the
matrix in eq. (274) of Appendix E, thus leading to a third degree equation for w2,
Explicit expressions can be derived if we assume the validity of the simplified
conditions exhibited in eqgs. (113) and (117), for which all the 3 X 3 matrices

become diagonal.

For this case the frequencies «w? are the elements of the 3 X 3 diagonal

matrix Q;,, given by
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Qiyr = '%-{Bl (1-cos jo)+B, (1 -coskg)+B, (1 -cosri)+

+2C, (1 -cos jOcoskg) +2C; (1 -cos jOcosr ) +2C, (1~coskpcos ry)

-4yI (1-cos j&cos k¢ cos I‘l,[})} (125)

in which
i=0,--+,N-1k=0,"+,N,-1;r=0,"",N;=1; 6=27/N; ¢=27/Ny; y=27/Ng
(126)

and the matrices B, are as in eq. (12) of Appendix A, while C; as in eq. (113)

above.

Three distinct frequency branches appear also here.

The only soluble case for a diatomic lattice is when N;,N, ,N, are all even.
This is in contrast to the diatomic lattice with rigid boundaries. The changes
in the dynamical matrix of eq. (123) are as follows: instead of the S given in
eq. (124) there are S; and S, alternating on the main diagonal of A(«w?), each

one with alternating F, and F, on their main diagonals,

F, 6 G F, 6 G
\ \
6 F,\ o o A
AR \ N\
SR AN A NN (127)
o\ VA o\ \ |
AR N\ 6
\’\J ~
¢ 6 \F2 ¢ ¢ F,
Al B1 Bl A2 Bl Bl
\ \
Bl A2 \ 0 B1 A1 \\ 0
Foo N NN F,=| \ N\ 128
17 NI T T v\ \ (128)
0 D \
\\ \ B1 0 \ \\Bl
\
Bl B1 A2 Bl Bl A1

in which again A, is as givenin eq. (114) with M replaced by M;, i =1, 2.
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Once more we assume the conditions given in egs. (113) and (117); and make
use of the results (306) and (307) in Appendix E to solve for the frequencies. It

is seen that there are 24 distinct branches and we exhibit below six typical fre-

1

quencies as the elements of a 3 X 3 diagonal matrix @ ikrs

1
Q% = o {- M, +M) P, ,/(MI-M2)2 P2, +4M M, Q2 } (129)
172

in which P, and Q;, are as defined in egs. (122), (123), and

j :07. c nl_l; kZO,"', n2—1; r:07. "y ns—l; ezﬂ/nl;cpz’n/nz;\)b:ﬂ/n3
(130)
Three additional matrices of the same type as in eq. (129) but with different
signs accompanying the cosines, complete the frequency spectrum of A(@w?). We

note that the functional form of the frequencies for periodic boundary conditions

coincides with that for rigid boundaries.

We conclude this chapter with two remarks: First, the treatment of harmonic
lattices described in the opening section is fully adequate for attacking lattices
with symmetries different from the rectangular model considered here. Second,
although the linear chain and the plane lattice particles have been assumed to
vibrate longitudinally and in the plane respectively, it is readily seen that these
limitations can be dropped if certain simple reductions are carried out in the

three-dimensional lattice.
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CHAPTER 1I
OTHER APPLICATIONS

The physics of periodic units is by no means restricted to lattice-dynamical
problems. In this chapter we shall present also situations which are unrelated
to calculations with normal mode frequencies, yet require handling by similar
mathematical techniques. The functions of matrices that arise and the finite
sums associated with these, are not necessarily connected with the statistical
mechanics of the systems. The functions appear naturally in most of the situa-
tions considered. The examples below, selected from diverse fields, will illu-

strate these ideas.

The theory of electrical lines is entirely analogous to lattice dynamics theory,
and one can indeed set up a one-to-one correspondence between the quantities of
interest in both theories. An example of this is given by Brillouin [4] in the
treatment of an electrical line analogous to a diatomic linear chain with two

distinct spacing constants.

A different example from classical physics was discussed by G. N. Watson

[27]. He became interested in the evaluation of sums of the form:

N-1
Sy (r) = Z [cosec (k6/2)]7F; 6=27/N; r=1,3,- " (1)

k=
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Apparently, these sums occur in a classical treatment of a Bohr type atom:

electrons, equidistantly spaced, are assumed to move in the same circular orbit,

with the positive nucleus at the center. The small oscillations of the system are
‘ found under the assumption of Coulomb interactions and the sums enter the re-
sulting frequencies. The analogous gravitational problem is the motion of
satellites rotating in a circle about a planet This is a simplified form of the

problem of Saturn's rings considered by Maxwell,

The sum above, laboriously evaluated by Watson, can be immediately brought

to the form of a trace of a known matrix, on using the identity
2sin® (k6/2)=1-cos k6 (2
Introducing a parameter ¢, which is ultimately made to vanish, we can write

S I L 1 1o ~x/2
N (r) = egno Z € +5 -5 cos (3)

k=1

This sum is treated in eq. (90) of Chapter II.

The statistical mechanics of a finite plane lattice fully packed with rigid
dimers (these are pairs of particles connected by bonds) provides an example
of a situation where normal mode vibrations do not appear. The problem which
has been treated independently by Fisher [28] and Kasteleyn [29], is to evaluate

the configurational grand partition function of the system

Z = ) B, (V)XY @

1
m+n=-— MN
2




in which g, (x,y) represents the number of ways of placing m horizontal (or
x-dimers) and n vertical (or y-dimers) on a lattice with square unit cell and

MN sites. Thermodynamically x,y are the activities of the x -,y -dimers re-
spectively. Physically this problem is a simplified version of a model, including
also monomers, considered in the thermodynamics of adsorbed films and mixed

solutions [30, 31]. Fig. 1 shows a simple situation.

Figure 1

Using topological methods to enumerate the possible configurations, Fisher and
Kasteleyn succeeded in showing that Zf‘ y 18 equal to the determinant of a two-
dimensional continuant matrix (or a two-dimensional circulant matrix if the

dimers are placed on the surface of a torus), as follows:

1

z4
Z;‘;N = QMN H H {x2 cos?m0 1+ y? cos? no} (5)
m=1 h=1

=n/M+1); ¢ =7/(N + 1)
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A simple transformation brings this to the form
g

1
2

lim
N7 Lo I-I H {€ +a® + x%? cos 2m0O 4 y? cos 2n ¢} (6)

in which

a? =x2 4 y2

If we denote by Z (¢) the expression following the limit sign in eq. (6), we can

write

= log Z(e) = Z Z 1 R0
€ +a? + x2 cos2m<9+y cos 2n¢Q

m=1

This is a sum which can be readily approximated by using the techniques of

Chapter I11.

In the two-dimensional Ising model of a ferromagnet, the traces of certain
matrices represent the thermodynamic functions associated with the system. The
fundamental paper by Onsager [32] exhibits several such sums, the simplest

being similar to that in eq. (1),

N
Sy (D) :% Z cosec (k - 1/2) 6; 6 = /N (8)

in which N is the number of parallel chains (or rows). This sum enters the
specific heat expression for the lattice of spins, The sum can be treated in a
fashion analogous to that described for eq. (1).
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A more complicated type of sum arises in this model when correlations
between spins located at different sites are considered. Bruria Kaufman and

Onsager [ 33] show the appropriate ensemble averages to yield sums of the form

N
Z :1%1 Z cos [27ak/N+ 85 ];a=0,1,2,- 9)
a k=1

in which S;k is given, for a quadratic lattice, by

+ _ __.-1 Jcosh2H [1 - sinh 2H cos (27k/N)] (10)
P2i = cot { sin (27 k/N)

where H=J/kT andJ is the interaction energy between nearest neighbors.

Similar sums appear also in the spherical model of a ferromagnet proposed

by Berlin and Kac [34].

The theory of random walks on multidimensional lattices has lately attracted
attention because of their mathematical equivalence with certain physical situa-
tions, notably the motion of defects in crystals and the theory of spin-wave inter-
actions [35]. Extensive use is made there of Green's functions, which appear as

multidimensional sums of the type shown in egs. (163) and (207) of Chapter I,

In a study on the electronic states of a one-dimensional crystal under an

applied electric field, P. Feuer [36]is led to sums of the type

N
S, (n) = 2 Z __cosnkf . g_2mN (11)
Nk_oﬁ+28cosk9
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These sums represent the coefficients needed to construct the localized Wannier
functions from Bloch orbitals. This is a slightly more general sum than the one

in eq. (1) (for r=1).

The reverse problem of constructing Bloch orbitals from atomic orbitals,
i.e., from localized functions centered around the lattice sites, leads to the im-
portant concept of overlap matrix A [37]. If (b{ = ¢(r - r ({) )is the normalized
atomic orbital connected with the nucleus at the lattice point r ({)= -, a, +

‘,a, *+ ', a, ,thenA is defined as follows

By = Jcﬁjﬁ ¢;0 dr (12)

The Born-von Karman cyclic conditions imply here that A is a circulant matrix.
If instead of the original set {¢ &} , one requires a new set {cp#'} of orthonormalized

atomic orbitals, the transformation is

¢ = ¢A"1/2 (13)

Lowdin and al., [ 6] have evaluated A~1/2 for a linear chain by using a Chebishev
expansion method. This approach of linear combinations of atomic orbitals (LCAO)

is known also as the tight-binding method.

Molecular theory abounds in systems characterized by repeated units. First,
the problem of calculating the normal mode frequencies of molecules possessing
periodicities: e.g., linear and zig-zag chains of atoms [5] lead to matrices
(continuant and circulant) already considered. More interesting are the calcula-
tions of the electronic structure of polyenes and aromatic molecules. Lennard-
Jones and al. [38] have treated these extensively by use of the molecular orbital
(MO) method, and were lead to continuant and circulant type matrices, the eigen-
values of which gave the 77 -electron energies. Moreover, these authors encountered

sums of the form
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Sy = 2 Z Va? s 2aBcos kb + B2 ; 6=2n/(2N 4 1) (14)
k=1

representing the total orbital energy.

Work along this line has been carried on by several authors [39], while more
recently Salem [40], in a study of bond alternation in long polyenes obtains sums

of the type

N
sm“(r):m1 - Z cosrkb . 0=27/(2N+1) (15)
LA Y1+2t2coskO4t?

In conclusion we remark that most of the authors mentioned above evaluate
the sums they obtain by passing to the limit N—® and calculating the resulting
integral. Lowdin [6] and Gilbert [7] are the exception — they evaluate their
sums exactly. Salem uses a technique of changing the order of summations, but
then expands in powers of t2 and stops with the first term. A generalization of

this technique is the basis of the mode of calculation presented in Chapter II1.

It is to be remarked further that while the conversion of the sums into
integrals is not critical for large N, for moderate or small number of particles
this is no longer so. Itistherefore important to be able to assess the corrections

stemming from finite N. Our method has precisely this advantage.
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CHAPTER II

METHOD OF CALCULATION AND SPECIFIC RESULTS

In the preceding chapters we have presented several physical and chemical
problems that lead to the classes of matrices exhibited there. In this chapter we
discuss functions of these matrices, in particular analytic functions. Such functions
appear naturally in the statistical mechanics of the systems previously discussed
and in perturbation treatments of chemical systems. One matrix function that
already appears in classical physics is the inverse of A(«?): when external forces
act on the system, knowledge of A™! (w?) is necessary for the complete solution of
the dynamical problem. The inverse of A («?) (or the Green's function of A) is
essential also in the method developed by Montroll et al. {8,9] for the calculation
of characteristic frequencies of lattices with defects. On the other hand all of the
thermodynamic functions of the systems previously discussed are essentially
traces of analytic functions of the dynamical matrix A (.?): e.g., the partition

function from which all thermodynamic functions can be deduced, is defined by:

N hwj
) how, -1
-logz=-"2 4 Z 125 log{l1-e ¥T (1)
kT — 2 kT
J=

or in trace form

h

A2 (o2
KT (@5 +

+log <1 - exp (—l a2 (wz))> (2)
kT

where @, is the electronic ground state energy of the system.

i)
-logz=-—",0r 1
kT 2
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The vibrational zero-point energy is just
1
E, = S 3r {a/2 (A)} - (3)

We note that to find the elements of the function of a matrix it is necessary to
calculate certain finite sums involving the same function of its eigenvalues. Let
us assume that F(z) is a function defined on the spectrum of A and analytic in
some neighborhood of the origin, and let A, , k = 1,...,N , the eigenvalues of the
matrix A be all contained in the circle of convergence of F(z). Thenif T is the

matrix diagonalizing A, we can write

©. F(")0
F(8) = SRR
n!
n=0
Z FEOO) pp gt = TR T (4)
— n:
where
Ay = Ay By (5)
Hence
N
F@®)l,, = ) FOD T T (®)

j=1
Sums of this type are somewhat more general than the trace-type sums
associated with the thermodynamic functions,
N

Z F(A\;) =9r {F(8)}- (7)

je=1
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It is of interest at this point to present alternative expressions for finite
sums of the type discussed. First the contour integral representation based on

the Cauchy residue theorem

N

Z F(\)) = 2_:1 f F(2) % log 8 (2) dz (8)
C

j=1
in which

B (z) = det (B, - zI) (9)

if the A, are eigenvalues of a known matrix A, or 8, (2) a polynomial with A,
for roots if no such matrix is known. The contour C has all >\’. in its interior.
The representation (8) is useful more for asymptotic approximations than
for exact calculation of the sums.
A different representation arises when the sum is converted into an integral.
Let the A 's be real numbers, then one can write for sufficiently well-

behaved functions F ()\)
F(A) = f F(A) 8(A - \,) dA (10)

where § is the Dirac §-function.
Assume now that interchange of summation and integration is permissible.

Then we obtain

N ©

N
Z F(/\j):f F(\) Z BN =N,y pdA. (11)

j=1 - j=1

We define now

N

-1 S(A = A\,
GV . Z ( i) 12)

j=1
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and hence
N

ZF(M):N [ F(A) GO dA . (13)

i=1 V.o

If we denote by !l (\) the number of A;'s which are less than or equal to A,

it can be shown that
N
RN :Z HOL - 7)) (14)
j=1

where H (x) is the Heaviside unit function, and
1 d
GA) == — N(A)- (15)
N dA

The function G (\) is called the eigenvalue distribution function. It is not difficult
to show also that
GCIADy = 2[x[GOD. (16)

Later on in this Chapter we shall evaluate (} (A2) for certain special forms
of )\j. The above formalism will be useful also for the conversion into integrals
of sums other than the trace-type ones. In the following we shall treat both types
of sums by a method which is different from both the complex and real integral
representations. Although, for the sake of continuity, explicit reference is
given to the matrices from which the eigenvalues arise, it will be apparent that

the treatment is independent of this knowledge.

3.1 One-Dimensional Sums

In this paragraph general results regarding circulant and continuant
matrices will be presented. We have seen that these matrices are associated
with problems where periodic and rigid boundary condition, respectively, prevail.
It is not difficult to write down formulas for the matrix connected with free

boundaries, and also for more general situations — the only requirement being
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that the eigenvalues have the same functional form. We shall not do this here
as the method is sufficiently well represented for the cases mentioned.

(i) Periodic Boundary Conditions

Instead of treating the symmetric case alone we shall consider here the

more general case of an asymmetric circulant matrix, defined as in eq. (116) of

Appendix E
B=(8gS; -+ Sypdeye. 1n
with eigenvalues
N-1 27k
Xk:E sjel Nok=0 ...,N=-1, (18)
i=0

As shown in eq. (124) of Appendix E, the diagonalizing matrix U is such as to

reduce the (m, n)-element of F (4), to the form:

N-1
1 27i(m ~-n)k
[F(a)], =— E F(A,) exp [—-——————-] (19)
N k=0 N

Therefore we consider in the remainder of this paragraph sums of the type

N-1

1 27irk
Sy = F Z F(A,) exp [- -——N ] (20)

k=0

where r is an integer. Without loss of generality we can restrict r to the range
0 <r < N -1, as all other cases reduce to the form (20) by periodicity. When
r = 0, S; reduces to the simpler trace-type sum of eq. (7).

As it stands, the sum (20) cannot be computed unless N is small or unless
F (X)) has special features that enable the sum to be evaluated in closed form.
Using a technique which is the generalization of a method quoted in [ 6], we shall
convert this sum into a form which is more convenient for accurate calculation or

for approximate evaluation.
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Our technique is based on the fact that the A 's have the same functional
dependence, namely, there exists a function A (), which generates the eigen-

frequencies under discussion

EBYCRY (21)
Here we define

N-1
O = Z S; exp(ijo). (22)

7=0

Then clearly
27k
Ay = x( u ) (23)
N

The form of A (9) suggests a Fourier series expansion for the function

F {\(6)}. Therefore we shall assume that such an expansion exists and write

®

F{NO)} = Z A, exp(ij0) (24)

i=0
with

2m
A, -1 f F{A(O)} exp(~ij6) db . (25)
27 o

In eq. (24) only positive j 's are required since A (9) contains only positive
powers of exp(i¢)and F (z) only positive powers of z.

Using the expansion (24), we can write

[¢2]

271k
Z A, eXP[W;JJ }

j=0

N-1 ..

E A" exp{zﬂl]k} (26)
! N

i=0
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where the A’;‘ are expressible in terms of the A's:

o9]

NS an

£=0

The result in eq. (26) is a consequence of the periodicity of the trigonometric
function exp(ij&). We note that the rearrangement of the series is legitimate
since the analytic character of F(z) guarantees uniform convergence within the
circle of convergence.

Insertion of (17) into (11) leads to

N-1 N-1

_1 * 2mik(j - 1)
w3 55 ()
k=0  j=0
- A%, (28)

This result shows that a finite summation of this type acts like a filter on
the Fourier coefficients of F{A(6)}, "sifting" out an infinite number of them.
In this connection a historical note is of interest: the British mathematician
Thomas Simpson discovered in 1758 [13] that if a function f(x) has the Taylor

series expansion

n=0

and if
N-1 ; 27k 2mirk
1 N TN
SN(r>0)z__Z f(e x)e
N
k=0
then



This is a consequence of the fact that the sum of the roots of unity vanishes.

Later on, De Morgan [13] extended this result to the roots of xN = -1.
ke

It is obvious that for Ak = e i}T“— z, a Fourier expansion of F (z) will not be
needed in our treatment.

Returning now to the result (28) we see that the evaluation of the finite sum
is reduced to the evaluation of the Fourier coefficients and the infinite summation
of eq. (27). While this may seem to complicate matters, it must be remembered
that Fourier coefficients decrease with increasing index, by virtue of the Riemann-

Lebesgue lemma, and the convergence of the series can be quite rapid. Fre-

quently the approximation

S, ~ A, (29)

will be sufficient for computational purposes since when F (z) is analytic, the
Fourier coefficients will fall off exponentially with the index. Moreover the
approximation of eq. (29) is precisely the conversion of the sum (20) into an
integral (i.e., passage to the limit N - «). This will be a particularly effective
approximation when N is large. For those problems in which N is not large
enough to warrant the approximation by an integral, the formula (28) allows one
in principle to estimate the correction terms successively.

Procedures similar to those given above suffice to discuss the important

special case when A is a symmetric matrix. We can write in this case

(Sg Sy -+ Sy Sy.q -+ Spleyel. N=2M

(s0 Sy - Sy Sy Sy - Sl)cycl.NZ IM+1.

The eigenvalues can be written then

M-1
27k j 27Mk
>\k:SO+ZZ sjcos<NJ>+2esMcos<N ) (31)
j=1
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where

| —;— for N =2M
° T (32)
1 for N=2M+1.
The function A (9) defined in eq. (21) is replaced in the present case by
. M-1
AO) =) +2 Zsj cos jO + 2€s, cos MO. (33)
j=1

Then A (¢) being an even function of 6, so is also F{\(6)} and we can assume the

Fourier expansion:

FIMOY =2 A, + Z A cosn® (39)
. —
where
| .
A = % f F{A(6)} cos n 6. (35)

[

As for the asymmetric circulant matrices, a rearrangement of the series

for F (A, ) leads to

27jk
F(N) = A* cos (36)
with
» B=Loa Z Agn (37)
2 T
) and

A,';>0 = Z Ajwf,n (38)



Then the sum (20) for the A of eq. (31) becomes

S, = — A% (39)

If the exponential in eq. (20) is replaced by the cosine term cos 27rk/N,

eq. (39) will be replaced by
1
=2 (M ALY (40)
In both cases r = 0 leads to the formula for the trace-type sum,
Sy =AY . (41)

The results of the preceding analysis can be easily generalized to the calcu-

lation of sums of the form

N-1

_1 S By exp [ <_2k_1>_] 42

N k=0 N

with r as in eq. (20) and
N-1 ) )
}\k = S. exp [M] (43)
Z ! N
7 =0

are the eigenvalues of the matrix A* , called a skew-circulant in eq. (164) of

Appendix E,

The argument leading from eq. (22) to eq. (27) can be repeated with a slight

modification to yield in this case the result:

5y = & 49

in which

. _ i 45
A* = Z (-1)V A, iy (45)
j=0
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Similar results can be obtained for other values of r in eq. (42). If on the other

hand the first row of A* can be written as

(sy 84 Su> = SMe1 - T S{skew-cyel. N =2M
At=
(SO S, "¢ Sm* ~ Sy T Sl)skew-cycl. N=2M+1
then the eigenvalues are
M-1 ‘
Kk:so+2 E s.cos&kJr_l)_J+2esMcosZ£_2_l'f_i._!_)_M
— N N

where

—_ N = 2M

1 N=2M+1 .

The Fourier expansion then contains only cosine terms

n

27
A -1 J F{\(6)} cos nd db
7
0

and the sum

N-1
1 2 : 7(2k + 1)r
Sy = — F(A, ) cos ———— 7
N k=0 N

with r as in eq. (20), can be represented by the expression:

So=g [ eA]
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(48)

(49)

(50)
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in which

1 ;
By =y s Z (-1 Ay
i=1

A/?,>0 :Z (— I)JA'{)/*'lN
j=0

An analysis of the preceding exposition shows clearly that the following general

L (52)

/

result can be stated:

From a given eigenvalue-generating function A (¢) and a given analytic func-
tion F(z)—which is defined on and its domain of convergence contains the set of
values {A(6), 0 <6 < 2 7}—one can construct a whole class of finite sums by
choosing N values 6, , such that et be the roots of an algebraic equation of
the NtP degree. Since the set of Fourier coefficients for this class of sums is
unique, the values of these sums will depend solely upon the filtering properties
of the 6, 's.

We proceed now to apply the formulas developed above to cases of general
interest. The discussion will be restricted to the asymmetric and symmetric
circulants.

(i) The Inverse A-1

The function F (z) = z°1, strictly speaking, is not analytic in the neighbor-
hood of the origin, yet the formulas developed above can still be applied if the
integrals associated with the Fourier coefficients are taken as principal value

integrals, whenever needed.
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In the asymmetric case the integrals to be evaluated are

27

1 e iit d4g
Aj :2—
77 i@ i26 i(N-1)8
o Sp +S,€7 +s, € +"'+SN-le‘( )
- 21 i f dZ (53)
71 j+1 N-1
Cz (s0+slz+...+sN_lz )

where C is the unit circle. The contribution to the integral from the pole at the

origin is the coefficient of z' in the Taylor expansion of

w

[P(Z)]’l = [SO +S1Z + .. Sy ZN-1]-1 - E AgP) zi (54)

=0

In the form of a determinant this contribution is

S1 So
N\ \
NN
s )
. 2 D
- ) | \ \
AlP) — (-1 AN . (p):i (55)
j . ! h NN ’ S
(561 AN 0
¢ YN
N N
: S U S N
\ \ \ \
S;=% ='==-8, sy

Unless a computer is used for the numerical evaluation of the determinant,
this expression for A(jP) is not very practical. An equivalent form can be found
for A(jp) provided the roots z, of P (z) are known. Suppose that P (z) has no

multiple roots (the extension to the more general case is trivial). Then we can

write
N-1
P(z) = s, I ‘ (1 +0, 2) (56)
k=1
with o = — 1/z, . Interms of the o, , the value of A is calculated to be
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N-1 o—j+1

A = (-1) k . (57)
; = (=1 Z T
= \ Uk)

Since the only dependence on j is through the term orli“ we may find an explicit

expression for the A*(®):

N-1 O_r"’l
A*r(p):(-l)' E : 1 k (58)

k=1 p'<__1_> 1- (-

%%

where we have summed the geometric series involved under the assumption that
lo, | < 1.

In particular, A(rp)* will coincide with A* whenever P (z) has no roots
inside or on the unit circle. There exist several sufficiency conditions for this

to happen. One condition given by Landau (14], is

-

] ! . L
sy >s >...>sN_1>0,sk_sk/so. (59)

A second simple condition can be obtained by using Rouche's theorem*. For

example if

|s'll+ls;l+...+|s'e|<1 (60)

then the roots of P(z) will lie outside of the unit circle provided

(l+si+s;+...s'e)>(s'e+1+...+s'_1). (61)

In particular this is true if

Z Isi] <1 (62)

j=1

*Rouche’s theorem states that if f(z) and g(z) are analytic within and on a closed curve C, and if
If () | > lg(2) |on C, then f(z) and g(z) +f(z) have the same number of zeros inside the region
bounded by C.
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An exact result can be written down immediately for the case s, =0, k2 3if
it is assumed that only the pole at the origin contributes. Then the easiest way
to evaluate the Aj 's is to use their determinantal expression of eq. (54). Using

the value of this determinant given for the appropriate form of eq. (15) in Ap-

pendix E, we find

i+l i+l
. 2 _ /<2
A (1) 1 Sp+Vsy =45gs, e 4s, s, - (63)

j '+1
s? /2——_ 2 2
0 s; - 45052

Therefore the sum

N-1 _2mirk
s c X 64
N 2mik 4mik (64)
k=0 N N
Sg +5, € +5s,e

on evaluating A’ of eq. (28) with the A,~ 's of eq. (63), becomes

/T as s \'H!
S - (- 1)* s, +7s] _450 S, 1
N ~ 25 N
\/sf_4sos2 0 L s, +st—4sos2
250
r+l
—— 2 -—

N 4s, s, 1

250 N
) —sl.p/sf--4sos2
- 250 (63)

This expression has a finite, well-defined limit when N - w,

The elements of the first row of A™! are obtained from eq. (65) by letting
r take the values 0,1, ---,N - 1. These elements characterize A™! completely
since a function of a circulant matrix is also circulant.

It is clear that if all the s 's vanish with the exception of (any) two of them,
the sum again is easily evaluated in a closed form. In some instances it is more
convenient to use a full Fourier expansion. For example if the A 's are of the

form:
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27k 2m(N-1) k w
_ N N
Ae =Sg ¥ 5, € t Sy-p €

k=0,...,N=1 /" (66)
i?;"i _iﬂ
=s, +s,e N s e
0 1 N-1 J
Then the appropriate A (6) is
MO = sy +5, et 15 eif (67)

and the Fourier coefficients associated with the sum

N=1 _i21rrk
1 e N
SN ——ﬁ }\k
k=0
are
2n .
A = 1 e”inf 4g 1 f dz (68)
n “ o H -3 - 1
27 0 Sy + Sl e15 + SN-1 e ié 27i . Zn(Sl z2 + Soz + SN—l)
n>0
27 .
A - 1 eind dg 1 f z" dz (69)
-n ~ R . T .
nso 27 0 So n Sl e19 + SN—I e if 2771 A sl 22 + So z o+ SN—l

The values of these coefficients, which can be calculated exactly, depend on the
location of the zeros of the denominators with respect to the unit circle. Since
in Appendix D we exhibit an alternative way of computing such simple sums
exactly, we shall neither calculate here the integrals (68) and (69), nor perform
subsequently the summation for Sy -

Similar expressions will be obtained now for the symmetric case. Let us

start with the expression (35) for

2m 27
A :_1_ cos n@ dé _l cos n@ d& (70)
L o M-1 T Jy PM(cos &)

S +2 E s; cos jO + 2¢€ cos MO

i=1
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The polynomial P, (cos §) can be factorized such that

N
P, (cos 0) = s, W (1 + 0o, cos 0) (71)

i=1
where again o, are the reciprocals of the roots of P, (z). If we restrict the

discussion to the previously investigated case of

M
Is; | < Isgl (72)

i=1

which means Iojl < 1 for all j,then the integrals A  can be evaluated by

partial fraction decomposition:

M
o.
An :i cos nf ? ! 1 do *
7 A —= p’ (___) 1 +0, cos 6
o.
i
n

N
_, Z O'j a - U?)1/2 -1 ' (73)

, 1
. P (— _) U’
9

Hence the appropriate sum of eq. (40) can be summed explicitly

=1 —_
] g.
}

S L N S
N : (1_0.1.2)1/2 Pl(_]')1_{[(1—(712)1/2—1]/0'1}u

M-r

1 - o2)1/72 _ 1\’ 1-02y1/2_
} << D ><<_U_z__1> . (14)

A number of exact results are available also in this case. For example if A (8)

is of the form

*The value of this integral is exhibited in Appendix B

77



M) =54 + 251 cos ¥ - (75)

then again using the integral (4 ) of Appendix B, we can write

1 g cos nd déd
A, =— Sp + 25, cos 6

i
0
(
/2 ) n
1 <50‘451‘50>, s; - 4s] - s, o1
\/sg —4sf 251 251
-4 (76)
(- 1)° < s; - 4s? + So>n sg - 4s] + s, 1
- : <1.
t r———-—sg -4sf 2s, 2s,

Then the first case in (76) leads to

VYs2 _4s? _ s \" Vs? - 4s?2 _ s\
0 1 0 + 0 1 0

2s 2s
Sy =g —— : : (77)
sg -4sf ng -4sf -SON
1 -
251
The second case leads to an identical form since the value of a finite sum is
independent of the mode of summation as long as no terms are neglected.
Another case which admits of an exact treatment is the following:
>\k =5, + 2s1 cos 27k + 252 cos AL . (78)

Instead of evaluating the Fourier coefficients it is simpler in this case to
relate the sum associated with (78) to the sums associated with the eigenvalues

xi given by

N =25, % 425, cos 2T (79)

where

-s, +/s?2 - 2
s _/sl 45052 +8s2

4s2

Xi:

(80)
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and X; A, = A, - Itis easy to see then that

Sy =——— [S} - S50 (81)
X

-X

(2) Other Functions of A

We have seen that the calculation of the inverse of the general circulant
matrix already presents great difficulties. It is therefore not surprising that
the evaluation of more involved functions complicates the computation consider-
ably. Hence such cases will be best treated by numerical methods (assuming of
course the elements s; to be known). But even for numerical treatments the
general discussion above is of value, since it exhibits clearly what are the
dominant terms and therefore provides a practical scheme of computation.

For certain special cases some results can nevertheless be given in terms
of known functions. These special cases are treated below.

(1) Avs Vf 0,1,2,---

The elements of A” give rise to the sums

L ik ATk amirk
So

+s,eN 4s,eN e N (82)

S =

k=0
where we have agsumed

MO = s +5, ei? 15, €% (83)

The Fourier expansion of [\ (6)]¥ can be effected as follows:

(sq + 5, eif 4 s, ei?y - sy [1 -2xz + 22]¥ (84)
where
s s, .
X = - 1 . z:l/—i eif (85)
2Vs, s, So
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If it is true that |s,/s | < 1 and |s, /s,| < 1, the following expansion is known
[15] to exist

@

(1-2xz+ 22)’.’ = Z CY (x) z" (86)

h=0

where C# (x) are Gegenbauer polynomials with the explicit representation

(5]
cioo = ) (TEN(T ) (87
m=0

Therefore the Fourier coefficients of eq. (84) are

27
i6 i20\v -inf
f (sg + sy, +s5, et e dég
0

s n/2 s
g<_2> cr [\ (88)
So 2Vs,’s

2

1

n 27

>
il

|
4

Inserting these values in previous formulas we obtain the sum S of eq. (82).

When A is symmetric the pertinent sums are of the form

N-1

1 9 27k v 27rk
SN:_E E s, + 2s, cos N cos - . (89)

k=0

The evaluation of this sum proceeds as follows: we write

(sq +2s;, cos )Y = (s;)” (1 -2pcos 6 + B (90)
(1 + B2y

where 3 is that root of the equation s, x? + SoX *s; = 0 which stays finite for

Sl—‘O,

2
p=- 0, <i>-1 . (o1)




To find the Fourier expansion we require |5| < 1. Assuming this condition

to be satisfied, we can use tables [16] to write down the result

27
A = 1 J (sy + 25, cos J) cos nt dF
0

nooo

(92)

(-2, =v4n, n+1: 3?2

1+52)] T(-»)T(n+1)

where F denotes the ordinary hypergeometric function. Then

v i r+nNI—'__ N
SN: SO 1 Z{/E ( V+Tr +n ) F(—V;—V+r+nN; r+nN+l; ,82)
1452 T(-v) &= L ['(r +nN+ 1)

r 20

BLEADN-T Py 4 (n+1)N=-T)
+

F(-v;-v+(m+1)N=-r;(n + )N -1 + 1; 32)
M((n+1)N-r +1)

(93)
Sy = ( S___.O )v F(-v, -v, 1; 2% ¢+
1+ B2 o
r=0
.\ 2 Z B°NT'(-v +nN) F(-v; —=v +nN; nN + 1; 8%) > - (99
r(-1) - '(nN + 1)

For v = * 1/2, these results are somewhat analogous to those obtained by
Lowdin, Pauncz, and de Heer [ 6] .
(ii) Exp (74)

The sums involved for the asymmetric case are of the form:

1 N-1 2mik |\ _27ikr
SN - — E exp | 7T l:so +s, e N e N (95)
N .
k=0

The Fourier coefficients are found by using the well-known expansion:

i6 z : o
et = Y eind (96)
n!




A
A e v

e”inf exp ('rs1 eif) do

1 rs, 27
no 27
0

(s )"
= e 0 (97)

n!

Therefore

S 7s, - (7s,)70N
=0 ) ©9

n=0

Similar results can be easily derived from the above for sin (7A), cos (74) and
cTA (c a constant). For the symmetric case the pertinent sums are of the form:

N-1

Z exp {'r(so + 25l cos 2—;;E>} cos 271;“( (99)

k=0

[92]
8]

z
Z| v

The Fourier coefficients are

1 2 re

A -— e %exp {2s, 7 cos 8} cos ng do
i

0

277
_e0 1 f exp {i(-2s, i7) cos 0) cos ng do (100)
7
0

Using the expansion [16]

exp (iz cos &) = Jo(z) + 2 Z in Jn(z) cos né (101)

n<1
we immediately obtain

A - 2eTSO I (231 TY; n=0,1, ... (102)

n
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where I_(x) is the modified Bessel function of the first kind. Then

[=4]

Sy =’ Z {CD™NL 25 0 s GDeNTT (25, T’}(103)

r$0 n=0

S, =e 0 {Io (2s, 7) +2 Z (-1)"N I, (2s 7)} (104)
n=1

r=0

Again the functions cos (74), sin (7A) and c™B can be evaluated by using the

results above.

4. Calculation of the Eigenvalue Distribution Function

Here we want to evaluate the function Q(w’) defined in eq. (12) for two cases.

For a monatomic linear chain the eigenvalues are
w?:a+2bcos_2_;;_1; i=0,...,N-1 (105)

We need therefore the Fourier expansion of the function &(«? - a + 2b cos 9).
Following the procedure of Lighthill [17] for generalized functions, it is easy

to show, by making use of the transformation properties of the & -function, that

r [s 03
1
1+2 E cos mp cos md
27 |b| |sin ¢ -
m=1
a-2b|l <o? <a+2|b
$(w? - a - 2b cos 6) = (106)
0 elsewhere
-

In the above we have assumed for definiteness that a > 2 |b| and b < 0, the
case most frequently met in practice.” Then ¢ is given as the principal branch

of the function

*Other cases can be treated with similar ease.
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w?-a (107)

¢ =arccos —

i.e.,, 0< ¢ <.
Writing

w?=a-2[bl; «?=a+2]b (108)

the above can be rewritten as follows:

1 @
{1 +2 Z cosmcpcosm@}
m=1

YR - o) (@? - w?)

8(0)2 -a-2bcos ) :< a)§ < w? < wi (109)

0 elsewhere

|\
Performing the finite summation over j, we finally find:

( [¢4]
1 {1+2 E cosmNcp}; wiﬁaﬁﬁwi

i y/(wz _ wZ) (w?‘ ~w?) =

m=1

(Uz =
G ﬁ (110)

0 elsewhere

_
On comparing this result (for w, = 0) with that of Montroll et al. [11], we see

that the infinite sum represents the correction terms* which depend explicitly on

N, the number of particles in the chain.

It is of interest to note that (}(w?) can be also written in the form
s ®
2
§(No - 27k)
V(0? - a?) (@2 - w?) e

G(e?) = < (111)

0 elsewhere

-

*When used as the kernel of an integral.
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We note that the first term in the eigenvalue distribution function depends
solely on the form of the eigenvalue generating function, while the correction
terms depend also on the particular set of 6, 's associated with given boundary
conditions. Since the first term is the more important one we do not explicitly
exhibit correction terms for other boundary conditions.

We quote below the corresponding results for a diatomic chain the eigen-

frequency generating function of which can be written as

A (8) = w? otV 2 + v2? cos? 9 (112)
Then the Fourier expansion of the function
F(O) =50 ,(} + §{A.(O} (113)

is given by

e ®

2 |«? - al
ful 142 cos2mpcos 2mf
7

()2 = B2 |3 1y = (o - )2 |2

m=1
F(6) = ,
) for a- B+ 72 <a? <ay B 422
(114)
0 elsewhere
“
with ¢ given as the principal branch of
2 _ )2 _ B2
p=arc cos‘/“" )" -5 (115)
2
Then the frequency distribution function ( («?)
. 2N-1
G = o Z (800, (8))) + 510(8,))] (116)
=0
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is given by

(

2 le? - al Y
- 14+2 Z cos 2mNg
R L Y R R

m=1

VA
Cé(w)"< for GL_lﬁ2+,>,2l1/2 §w25a+|182+,>,2|1/2

L 0 elsewhere (117)

It is apparent that these results can be extended to more general situations,
the sole requirement of this method being explicit knowledge of the real roots of
the eigenvalue generating function (if such a one exists).

We conclude this section by noting that if the function F{\ (9)} can be ex-
pressed as a sum of products of simpler functions whose Fourier coefficients
are known, then repeated use of Parseval formula will lead to the desired Fourier
expansion, and subsequently to the required sums.

(ii) Rigid Boundary Conditions

In this section we treat sums associated with the matrix

A= NN (118)

shown in eq. (2) of Appendix E.
Before proceeding to the actual calculations we extend somewhat the scope

of this discussion by including matrices (not necessarily symmetric) of the type

a b1
0
c, a\ b2
[ \ \
A = c2 \ \ (119)
vy
A
v
AN bN—l
0 v\
c a
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where it is assumed that forall i =1,...,N-1
b, ¢, = const = b2. (120)

In Appendix E the discussion following eq. (15) shows that A’ and A are connected
by a similarity transformation. Because of this property we will work henceforth
with A exclusively. It can also be verified that the elements of an arbitrary

analytic function F(A') are related to those of A as follows:

" 1/2
Ca Cni1 -0 Co-t
[ hd _J x [F(a)l,, m>n+1
bn bn+1 o bm-l
(F(a")Y 1, = < [F)], m=n (121)

b b 1/2
\:m myl n-l} x [F(A)]mn an+1
C
.

m Cm+1 ... Cn_1

Since the eigenvalues of A are

A =a+2bcos X ;k=1...,N (122)
N+1
their generating function will be
A(f) = a + 2bcos 6. (123)

The elements of an analytic function F(A) can be written as

ul - n)k
PO = 1 7 ron deos 100K _<__2‘:} 124
" ON+1 n N+1 N+1

k:
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where use was made of eq. (6) and the form of T shown in eq. (12) of Appendix E.

Assuming as before that F{\(6)} can be represented by a Fourier series

A
FINBO)} == + Z A cosnf (125)
2 n=1
where
1 2m
A = = f F{\(0)} cos n6db (126)
™
0

it is seen that the F( Ak) result when g is set equal to 7k /(N 4+ 1). Substituting

the value of F(A,) from eq. (125) into eq. (124), we obtain

A N _
[F(a)] = —2 Z {COS mm -k m(m + n)k}
2(N + 1) N+1 N+ 1

1 = ol 7(m - n - j)k m(m -n + j)k
Fo—— E ij E cCO§ ————— -COS
2(N + 1) T ) N+1 N+1

- COS

- Nk n + j)k
(m+n-}) —COSW(m + 1) (127)
N +1 N+1

To evaluate the finite sums appearing in this equation we note that they are

all special cases of the prototype sum
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N
sk
2 COSN+1 =N8 sorNa1)

]38

1 N
+5 [(-1D —1][1—55'“,,(1“1) s, (214 1) (N+q)

-(1- 8s, +2r(N4+1) ~ 55,&(2 r+ l)(N+l)) 8s,i2r (128)
where r = 0,1, 2,.... The use of this formula in eq. (127) results in
_1
[F(a))__ = 3 (B, » +B.(m-ny =~ Buyn = B.(myny) (129)

m>n

where

Bi - Z Aj + 2r(N41) (130)

r=0

and a coefficient A{ is zero if 4 is negative. The restriction m > n is dictated

by the symmetry of A (which in turn implies the symmetry of F(a)).

In the following paragraphs we shall give some specific applications of the

formula of eq. (129).

1. Calculation of A™!

We have already found the Fourier coefficients needed here in eq. (4) of
Appendix B. When their expressions are inserted into the definition of the B's,
the resulting series are geometric and the matrix elements can be written in

closed form as
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V2n_1 V2(N+l)_v2m

ah, = m >n | (131)
Uvmen 1 o y2(NeD) -
where
Va2 - b2 -

V- a 24b a : U= va2 - 4b2 (132)

2. Calculation of A, v # 0,1, 2, ...

If v as obtained in eq. (132) satisfies
V] <1 (133)

then the Fourier coefficients are given by eq. (92), on identifying V with 3, So

with a and s, with b

A - a \ 2V ['(~v +n) F(-v, =v +n, n 4 1; V2)
1+VY T[(-2)I(n +1)

'(~v +n)
N(-v)I'n + 1

1§

2( -b)” y*-v F(-v, =v+n, n+ 1;V2) ;n>0. (134)

Then

w

[A”]mn = (—%) F(l-v) ? F(-v, - +m-n+2r(N+1), m-n+2r(N+1) +1;V2) x

r=0

5 F(—v+m—n+2r(N+1) ymen+ 20(N+1) 4

Fm-n+2r(N+1) +1)
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o

r
+ E F(-v, -v+2r(N+1)-m+n, 2r(N+1)-m+n+1; V?)
-1 I(n-m+2r(N+1) +1)

(-v-m+n+2r(N+1)) v

©

E (- N
- F(-v,-v+m+n+2r(N+1),m+n+2r(N+1) + 1; V2) (~v+m+n+2r(N+1)
r=0 M(m+n+2r(N+1) +1)

[s¢]

M(-v+2r(N+1)

-m4n4+2r(N4+1)

ymen+2r(N41)

-m -n)VZr(N.;.l)-m-—n

- E F(-v, -v+2r (N+1)-m-n, 2r(N+1)-m-n+1; V?2)

r=1

I'2r(N+1)-m-n+1)

3. Calculation of exp (7A)

The Fourier coefficients are given by

A =2¢""I 2b7); n=0,1, 2, ...

Then
@
A _ a
[em8] =7 E Im-n+2r(N+l) (2b71) +
mzn r=0
+ 2 L (Na1y - (m-ny (2D7) -2 Losns2eqnany (207)
r=1 r=0
fe o]
'E Izr(N+1)Q(m+n) (2b7)
r=1
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We can restrict m (because of periodicity) to the range 0 <m < 2(N+ 1). Then

o8]

Sy =e™® I,(2b7) + Z I2’£(N+1)-m (2b71)
£=1

@®

¥ Zlfﬂmnnm (2b7) o -

£=1

Ta

N+1

I0 (2‘07-) 8m,even + Z I2’£—m (2bT)
ey

: 5]

139
+ Z Im+2{ (2b7T) + Im_2,{7’ (2b7) ( )
t=1 m £ Q A1
This result simplifies for m = 0 to:
Sv,0 = €771, (2b7) +2 Z Lty (2P0 -
L=1
_€" cosh (2b7) (140)

N+1

3.2 Two-Dimensional Sums

In this section we present results relating to sums arising only from periodic
and rigid boundary conditions. Other cases, whenever tractable, can be treated

in a similar fashion.
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It is clear that as we proceed to higher dimensions, the computational diffi-
culties multiply. Therefore fewer specific results will be available. Nevertheless

our technique will still be advantageous for numerical calculations.

The matrices A touched upon here will be two-dimensional matrices, i.e.,
Mx M matrices the elements of which are N x N matrices. To specify the elements
of A (regarded as an MN x MN matrix) one needs four indices, or two vector
indices i = ( i, i2), Jj= (jl, j2). The first component of the vector index repre-
sents the row (column) of blocks in which the element is located and the second

the row (column) location inside the block.

If F(z) is an analytic function of z over the entire eigenvalue spectrum of A,

then the generalization of eq. (6) is as follows:
FOl = ) FA) Ty T3 (141)
i

where A; are the generalized eigenvalues of A (namely, M diagonal NxN -matrices)

and T is the (generalized) matrix which brings A to diagonal form.

i) Periodic Boundary Conditions

In this subsection we shall consider sums arising from eigenvalues connected

with asymmetric and symmetric two-dimensional circulant matrices.

The general asymmetric case leads to eigenvalues Apn Of the form:

M-1 N-1 imim . 2mkn
N = S.. et ﬁ e' N

mn ik
j=0 k=0

m=0,..., m-~1;,n=0,...,n-1
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Then, using the form of T given in eqgs. (212), (216) of Appendix E

1 o [™Py -q) n(p, -4q,)
[F(aY]y, = WZ ZF(Amn) exp <271 v + .
m=0 n=0

Plvq1=0v---»M-1,P2»q2=0»---,N-1- (143)

Eq. (143) shows that we are concerned here with sums of the type:

' 1 M—1 N-1 _2mirm _277i’f/n
S, = — E ? F(A p)e M e N (144)
B MN r=0 =0 r/ﬁ

where m,n are integers which can be restricted to the ranges 0 <m < M -1;0 <
n < N - 1 because of periodicity. Form =n = 0, SMN reduces to a simpler,

trace-type sum. We define now the frequency generating function A (6, ¢ ) by

M-1 N-1

NE, §) = Z Z S, el (104P) (145)
720 k=0
Clearly
A g = (2rE 2t (146)
M N

The analytic function F{A (0, ¢)} is assumed to have a double Fourier series

expansion

F{A(O, )} = E E A, ei(Pf+a®) (147)
p=0 q=0
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where

1 27 2m
A, — f J F{A(O, 0)} e PO+ dhd .
47T2 0 0

(148)

Again, only positive p, q are considered, since A (8, ¢) and hence F{)\(&d,0)}

contain only positive powers of e!? , ei®. In cases where A (9, ¢) contains nega-

tive powers of e'° and ¢ ©, the full expansion must be used.

Utilizing the expansion (147) we find

d 2 L 2mrp i2-rr’ﬁq
I'M N
FOA ) ? que e
:0

p=0 q

M-1 N-1 2nrp 2'rr’€q

iV 1
A’;q e e N

P=0 q=0

where

o] w

*  _ E E

qu - Ap+iM.q+kN-
=0 k=0

Again, the analyticity of F (z) insures the legitimacy of rearrangement of the series.

Insertion of (149) into (150) leads to

SMN = A’:;l,n
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The discussion preceding and following eq. (29) concerning the properties of

the Fourier coefficients, is pertinent also here and need not be repeated.

The general symmetric case leads to eigenvalues A _» of the form:

N-1 M- 1
A4 = Spo + 2Z So COS 27k4 + 27 sy COS 27N E S;o COS 271 )
- N’ N’ - M’
=1 ]:l
M-1 N-1 ) M-1 . L
+ 4 E Z S;) COS 2m £ cos 27tk +4n E s.y €Os 2mix cos 27N
_ M’ N’ A ’ M’ N'
1=1 k=1 ]:1
N-1 2
+ 2¢€ Syo COS _277_Mr + 4e¢ Syx COS 27k cos 2mMr
M’ — N? M
+4€m s COS 27Mr cos 2mNd (152)
M N
where
(1 r
— M’ = 2M — N' = 2N
2 2
€ = { o :ﬁ (153)
Ll M =2M+1 1 N'=2N+1
\

We obtain the frequency distribution function A (8, ¢ ) by substituting 6 = 27r/M’;

¢ =274/N’ in eq. (152). Then

96




F{NB, o) =1 1
(&0 4A00+2Z

F(A p) = E Z A’;q cos 27;:)Ir co
p=0 q=0

with
A =L
Pa 2
Then
where

0

p=1

oo} fos]
+ % § qu cos pf cos qo
g=1

p=1 =

M‘-1 N'-1

* 1 1 2 : 1
Ao = Ao + Pt
0 2 0 2 - AO.kN >

@
1
B0m3 D A
k=0

gq>0 -

)

j:l

© @ «©

2 Mo ) ) A

j=1 i=1 k=1

o
Z AiM'.q+kN’
k=0

© © ®©
1
A =2 )
po 2 AP+5M'y0 + AP+JM' , kN’
j=0 k=1

p>0 i=0
o w

*  _

qu‘ Z Z Ap+jM'
j=0 k=0

P.q>0

. a+kN'
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ApO cos p& + % E AOq cos qo
a=1

27 2m
J f F{A(6,9)} cos pfcos dbdo.
0 o

s 2mqd
Nl

~N

Y

(154)

(155)

(156)

(157)



Then a sum of the type

;] M=1 N'-d 27rm _27kn
Sue = 2 ) FOwpe W e (159)
r=0 /8:0

in which m, n are as in eq. (144), can be rewritten with the aid of eq. (156):

Suin' = 1op (159)
4 m,n

If the exponentials in the sum (158) are replaced by the respective cosine terms,

the modified sum is given by

1 160
SM - Z {* -m, N'-n +AM -m,n ,N’—n +A:,n} : ( )

For the trace sum with m = n = 0, we obtain:
Surn = A’go . (161)

We proceed now to calculations with specific functions F(z).

1. The Inverse Al

In the » :vmmetric case the integrals to be evaluated are

J J e iPfe i dodo
i

1 f f d{dz (162)
(27i)? oo Yo Z
€q+l zP+1 Z zJ ék
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where C' and C are unit circles in the (- and : -planes respectively. It is
obvious that even though some formal results could be written down for the
general case (e.g., a determinantal form for the contribution to qu from the
poles at the origin), these would have no practical value. On the other hand if
only a few of the Siy do not vanish, certain exact and asymptotic results can
be still derived. We shall not pursue this possibility here as illustrations will

be given for the more interesting symmetric case.
In the symmetric case we treat only the case

A(8, ) =a +2b cos § + 2c cos ¢ + 4d cos H cos ¢ (163)

where the integrals to be evaluated are given by

2 b ud
A -1 J’ j cos pé cos qp d6 dg (164)
Pa 2 o Jo a+2bcos6’+2ccoscp+4dcos¢9cosq3
The following conditions are imposed on the coefficients:
bl 2 fe| >2[dl; b, c, d< 0 (165)

It is clear that one integration can be immediately performed to yield an elementary
function, and we shall do so in the sequel. Here we find it more convenient not

to use contour integrals, the analysis being simpler in the real domain. Since

for arbitraryp,q an exact result is not available, we give first the value of Ay
where such a result exists. In Appendix B we have evaluated A, for different

ranges of the parameter a. Here we exhibit only one such result, eq. (22) there:
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A, =2 1 1 K / 2(1” - V) - (166)
m 1/C2-4d2 I/(U—l) (V+1) (U— )(V+ )
where

at2[pl ,._2a-2lbl

Uz — it Lod R (167)
2(|c] - 21]d) 2(lel +2]d])

and K (k) is the complete elliptic integral of the first kind the modulus k of which

is given by

k2 - 2(u - v)
(u-1)(v+1)

(168)

This generalizes results in the literature [11], including recent ones of Mathews
and al. [18].
Appendix B also treats the asymptotic approximations of the general integral

qu . For the case d = 0, exact results can be given for all qu by proceeding as

follows:

N

T i
A :_4_ cos pf cos qp df dg (169)
Pq 2 ) a+2bcos 8 +2ccos g

Under the same restrictions as in eq. (165) with the additional condition |a| 2

2( [b| + |c| + 2[d|), the following identity can be used

1 4]
- ~ax o"2bxcosf ,"2cxcos P 4 170
a+2bcos<9+2ccoscp J; € € N * ( )
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Since
ezcosy - J(iz) +2 Z ik J (iz) cos ky ‘ (171)
k=1
inserting (170) and (171) in eq. (169) we obtain:

qu =4 {5” BqO J' e ®* J,(2bix) J,(2cix) dx

0

a0

+2(1 - 8q°) 8p0 i9 J e ** J,(2bix) Jq(2cix) dx
0

+AL-3 )5 oiP J e7*x I (2bix) Jo(2cix) dx +4(1 -8, ) (1 +8 0) '3 (172)
0

X Jae_" Jp(2bix) Jq (2cix) dx}
0

According to Erdelyi [19] , the Laplace transforms in eq. (172) can be evaluated

explicitly

J e ax Jp(2bix) Jq(2cix) dx =
0

_ (P*4 iP*a bP cf 3. lp+q+l; p+1/2;9q+1/2, 2p +1;
P (a +2]b| +2[c|rtet

4
2q +1; 41b] le] > (173)

a+2b] +2]c| a+2]b]+2]c|

where 3, is a hypergeometric function of two variables [15]. It can be shown
that the expression for A, reduces to a complete elliptic integral of the first

kind, as expected from the case d # 0.
101



2. Exp (tA)

For the asymmetric case the pertinent sums are of the form:

. M-1  N-1 Come Cond 2mr 2nd
_ E M N v 'N
SMN =N exp ts, + ts; e +ts, e +ts;e e X
r=0 /€=0

_27mirm 21Ti/f/n

(174)
and no constraints need be placed on the s, 's.
The Fourier expansion is straightforward:
e "0 tpta st s9 E 1 < > > qsp
RN M CEN L 5152
A, = (175)
p s \J
etso tP*a gP g4 Z L : qQ>p
1 2 9 Y N S. S
_ it - (q - 172
\ . 1=0
These expressions simplify for s; = 0, to
< tPfd P g9
A= e %0 12 (176)

p! q!

and the summations involved in the evaluation of S, can be performed for p and

q separately.
The symmetric case can be treated in terms of simple functions only for

MO, ) =a + 2b cos O + 2c cos ¢

102




Then

et)\(e’q)) = eta e2btcos9 e2ctcos@ (178)
and we make use of the expansion (171), such that
— t N

A =4 L (2b) I (2¢ct); pq20 (179)

As in the one-dimensional case, one can extend the above results to functions like

sin sinh A (s . . poe
CoS(tA), cosh(tA) and c® (with ¢ a constant), without difficulty.

4. The Frequency Distribution Function G( o?)

The sum to be evaluated here is

M-1 N-1
G(w?) :_& Z ; 5 = A_p) (180)
=0 =0

Hence we need the Fourier expansion of the generalized function §{w? -A(6, ¢)}.
Since for the asymmetric case the eigenvalues A 4 can be complex, the appropriate
eigenvalue distribution function ((w) would have to be defined over the complex

plane. This is not done here and instead we treat only the real, symmetric case.
The frequency generating function X (&, ¢) here is taken to be
A6, 9) =a +2b cos § +2c cos ¢ + 4d cos G cos ¢ (181)
with the restrictions of eq. (165).

In Appendix C the Fourier expansion of the generalized function § {o? - A(6, P}

is effected. Here we present only the first (dominant) term:
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${a -c? + 2bcos O + 2c cos ¢ + 4d cos G cos @} ~

(1 ([ [a-vwarw
N 2u-v)

a-2bl -2lc| -4|d| <? <a-2[b| +2]c| +4]d|

/ 2 K / 2(u = v)
(1 -v) (1 +u) (1 -v) (1 +u

’a—2|b| +2|c| +4'd| <w2<a+2lbl -2|c| +4|d|

1 o[ /a-vwaiw
oo 2(u - V)

a+2b| -2lc] +4]d] <o? <a+2b| +2]c| -4ld|

L

where K(k) is the complete elliptic integral of the first kind with modulus k(k < 1),

and u,v are given by

a+2/b|l ~a? a -2|bl -o?
Uz —m—————— ] VZe—m—mmm— (1 83)
2(lel -2]dD 2(Jel +2[dD
The expression for Q(w2 ) is identical in the first term with that of ${w? - N0, P},

as can be seen from eq. (12). This result in eq. (182) is more general than that

quoted by Montroll et al. [11] in two respects: 1. The addition of the mixing

term  4d cosé cos @; 2. The constraints imposed on the parameters a, b, c andd

are weaker than those ordinarily used. Moreover this evaluation exhibits the
advantages of our method, since alternative integral representations for the s-function
lead, when mixing terms are included, to integrals which are not recognizable from

existing tables.
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ii, Rigid Boundary Conditions

As in the one-dimensional case, the formulas of this section differ from those

1

of the previous one only hecause the sets - - !, <z ! are modified. Again, it

is clear that the changes will occur solely in the correction terms.

The sums treated here arise from eigenvalues connected with two-dimensional

continuant matrices. The eigenvalues considered are of the type

o
(]
(1
o
w
e
]
[e]
i
0
o
7]
—
p—
(A0
NS
e

and the matrix elements of Fla). on tsing the explic

RV SR et 3 , S
icit form given in eq. (1

Appendix E for the

s
N
e
o]

o

. will be

kA W
7 % TrE, ’qu T P PG
ST A § Y - W s . 1o 2 . 2
EF(A?;, -— : T PO sin e - sin $1n S1in
A M ¢ T M M-1 N N
E 13 g
- P SIPEN! . 15
Py-ay - L L ' (185)
Utilizing the relation
1
SIDY X sin vV o- o N5 (XN = V)Y = COS (X ; VY,
¥ k
Es

B
i SN v rn Tin ,
Syx = - g7 Fo_coos - cos (136)
NOOM L 0 IN - L L oL i1 '
r=1 =

where, on account of periodiciiy i

s m.n can be restricted to the ranges

o]

O <md 2M+1:02n ¢ 2N+ 1. Tors = =90 §  reduces to a trace-type sum.



Now we assume for F{\ (6, ¢) } a Fourier expansion similar to that in

eq. (154), with appropriate A_'s, and define quantities U , V,

M N

U - ! E cos ULS ;i Vo= 1 cos ket (187)
Myl Myl kK N+1 N+1
r=1 /ﬁ:l

The sums appearing in (187) have been evaluated in terms of Kronecker é's in eq.
(128). Note also that U_j = Uj and V_, =V, . Then insertion of the Fourier expan-

sion of F( A y) and use of the Uj » V, leads to the following form for S,

1
SMN :I ; : ; : APQ “pa (Up'm t Up+m) (vq'n + Vq“\) (188)
p=0 q=0
where
(1
— = = O
2 P=q

€ :ﬁ_;. p=0,q>0 p>0,q=0 (189)

Ll p>0,g>0

If we further define

@ [o0]
BF'S - Z : z qu “pa Up+r vq ts (190)
p=0 q=0

then SMN can be written as follows

Se =7 (B, _ +B,_ _+B__ +B } (191)
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Since the eigenvalue-generating function A (¢,¢9) considered here is identical
with that of the symmetric case in the previous section, the Fourier coefficients
for the various functions F(z) coincide also. Hence there is no need to repeat

the results, and no particular application will be made to the sums Sun'

3.3 d-Dimensional Sums

This section is devoted to sums arising from problems in three or higher
dimensions. The sums will be over analytic functions of eigenvalues of d-dimensional
matrices. These matrices are straight-forward generalizations of the matrices
dealt with previously. It must be borne in mind that if one disregards the d-
dimensional partitioning of a generalized matrix, one is left with an ordinary
matrix the elements of which can be specified by the usual two indices. On the
otherhand if one has to keep track of the particular submatrices which contain
the element in question, the two simple indices p,q are to be replaced by two
d-dimensional vectors p,q the components of which take values from d appropriate
ranges. Examples of these matrices, apart from the (lattice) dynamical matrices
mentioned, are the matric representations of quantum-mechanical Hamiltonians,
where the elements are specified by several quantum numbers. This shows also
that the components P, of the vector indices are sometimes taken from a set

of N,. numbers not necessarily integers.

For the remainder of this section only the three-dimensional case will be

considered. The elements of an analytic function of A are given here by

(F)], , = Z F(A) Ty Too (192)
k
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where A, are generalized eigenvalues of A, T the (generalized) matrix which
brings A to diagonal form, and p = (p,, P,, P,); 9 = (q;, 9,, q;), With P,, q,

e{r(d , ..., {1’} . Inthe following the r(i) will be integers.
i

i. Periodic Boundary Conditions

Here we shall treat analytically only the simplest cases, since even for

these closed form results are generally not available.

The general asymmetric case leads to eigenvalues of the form

\
N N N3 Camjp  2mkq  2ndr
TN TN TN
_ 1 2 3
Apqr = Z ; ; ; L Skt € e e
i=0 k=0 Af=¢ &
(193)
p:O,,.,’ Nl_lquOs---v Nz‘l;r:01"'v N3—1
J
Then using the form of T given in eq. ( ) of Appendix , we obtain
Nl—l Ny-1 N3“1 . 27Tp(u1'Vl) .2Wq(u2°v2) .27Tr(u3"v3)

1 E E E N TN, YN
[F(A)]uv :WN— F(qur) e e x €
17273 p=0 q=0 r=0

Therefore we are concerned with sums of the type

21ripnl 21riqn2 2mi g

N7l N,m1 o Ng-l _
1 7\ > ! > \ - N, TN, N,
SN1N2N3 - N1N2N3 J ) Y F(qur) N € € (195)
p=0 q=0 =0

where n, n,, n, are integers which can be restricted, because of periodicity, to

the ranges:
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.- OSnISNl—l;OSnzsNz—l; 0<n; <N, -1.

Proceeding as before, we define an eigenvalue generating function A(B,9,¢¥)

and expand F{\( 6, ¢,¢)} in a triple Fourier series. The final result is

S = A’ 195
Nl N2N3 nnong ( )
Here
[+0] [s4] w0
Aplpzps - Z : Z AP1+jN1' P*kNy. p3t ANy (37
i=0 k=0 Af=¢
and

27
” J FING, ¢, Y} e iGo+p+ty) dodedy (198)
0

We have assumed X (6, ¢,y ) to contain only positive powers of ei®, ei?, iV and
therefore the integersj, k, £ > 0.

The general symmetric case leads to eigenvalues of the form:

N -1 271 Ny
A = 5 5 ; S A C0527TPJ cos 2mqk cos 27rd (199)
par - , , ik N N N

i=0 k=0 f=o ! 2 3

where the Sk 's satisfy certain identities, similar to those imposed in two

dimensions. Then

F{\@GB, ¢, )} = 7: 71 Z Ap1p2p3 6"1"2"3 cosp, dcosp,pcosp,y (200)

p1=0 p2=0 p3=0
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where

/
L b b =0
3 P, + Py, +P3 =
1 1
€"1"2"3:< 1
= P, +Py +P3 =2
2
k~ 1 P; + P2 + P3 >3

and

1
P{P,P S
1P2P3 3

Hence a sum of the type

N,-1 Np=1 Ny-1 s i)
S -1 F(ho_ De Np N
NyNNg N,N,N par
3 - p
q=0 r=0

p=0

with n;, n,, n; asin eq. (195), can be rewritten as follows:

and the A*'s are given by

© [o0] [eo]
A - € A 2
par ; ./ o Sikd Pp4iN, L qtkN,, ANy
j=0 k=0 /{,:0
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J‘J. J‘ F{\(6, 9, )} cos p, & cos p,p cos pyiy dOdpdy
0

(201)

(202)

(203)

(204)

(205)




When the exponentials in the sum (203) are replaced by the respective cosine

terms the modified sum can be written as

1 *
S - E A . } (206)
N1N1N2 8 an1+Lle'/3n +l_§£ N2,'}’n3+!-2—’-yN
2

1. The Inverse A}

Here we shall treat only the symmetric case for the simplest frequency

generating function A (6, ¢,y ):

A(G, p,y) =a +2bcos § + 2c cos ¢ + 2d cos Y (207)

The corresponding Fourier coefficients are

2
J] 1]' cos kb cos qp cos ry didedy (208)
a+2bcosf+2ccos¢p+ 2dcosy

1
qur Y
3
U (]

The only exact results available are for A, , and this only for particular
relative values of a, b,c and d. Fora= - 6bandb =c=d < 0, the integral has

been evaluated by Watson [20] , with the result

27
Aooozifff df do dy -2 (18,12/3-10V/3_7/6 x
am® 7Y 3-cosf-cosp-cosy 2
x K2 [(2 -V3) (V3 -V2)] (209)

where K (k) is the complete elliptic integral of the first kind.
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Montroll [21]) has generalized this result to the case d,b=c < 0 and a =

2(2|b| + |d|), such that

1 2 46 dg dy
Booo =
Ib] 73 Y% (2 + a?) -cos 6 - cos ¢ - a? cos Y
32
"% [Vy+1-vVy-1]Kk)) K(k,) (210)
/|bd| 72
with
4 ; 302
a = Iil ; 'y:#a_
b o2
k=3 Wy =1- /730 el - /71 (211)

k=2 Vy=14vy=3) /751 -vy-1]

andK (k) the first complete elliptic integral as before.

There exists a formal expression for qur in terms of a hypergeometric

function of three variables. The result arises as follows:

% 2m
A = 1 J dt II ™8T o~ T(2bcos® t2ccos@P +2dcosy)
par T 3

m % o

* cos pf cos q cos ryy df do dy (212)
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where we assume He(a) > 0. Since for integral n

2m

I e PTcesx cog nx dx = 27 iP J (Bri) (213)
(
we obtain
qur - 8iPtatr J e a7 JP(ZbTi) Jq (2¢c7i) J (2d7i) dt (214)
0

The integral in eq. (214) is a Laplace transform. Its value as given by [19] leads

to
_ B(-1ypratrpp o dr  (Pra+n)! (215)
"7 (a-2b-2c-2d)ypratrtt plg!r!
: 1 L 4b
x 8 1; s ) -3 2 1, 2 1’ 2 1; -
3P+ + T+ P+2 q+2 r+2 P+ q+ r+ —r—3 34

4c 4d }
a-2b-2c-2d’'  a_2b-2c-2d

The function 53, known as the Lauricella function, is a three-dimensional power
series. Its properties have not been thoroughly investigated and its alternative

representations, if any, are not known.

Tables for the general integral qur are available for certain ranges of the
parameters which appear in its denominator [22]. The same reference gives

also asymptotic forms of qur for large values of the indices.

Returning to A, it can be shown that two integrations can be performed
exactly in terms of complete elliptic integrals on using the results of Appendix B
for the two-dimensional case, and this can be done even when A (8, ¢,y ) contains
mixed cosine terms. But so far, attempts to carry out the third integration

analytically have not been successful.
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2. Exp (tA)

For the asymmetric case we treat the sums

N;=1 N,=1 N;-1 L2mj 27k 27
N N N
S -1 exp | ts,+ts. e 'i+ts,e ? jts,e °
N1N2N3 N1N2N3 0 1 2 3
j=0 k=0 =0

2min,j  27ingk 2ming 4

x e ' e 2 e 3 (216)

Since there is no mixing term, the Fourier coefficients can be immediately written

down

ts, 2m
A =E% ; J] fe"i(ﬁ*qcP*ﬂl’) exp {ts, eif 4 ts, ei? 4 ts, eV} do do dy
77') 0

par
2

etSO tp+q+r Sp Sq Sr
= 123 (217)

p!' q r!

The summations involved in the evaluation of the sum S can be performed

1NaN3

separately for p,q and r.

The symmetric case leads to the Fourier coefficients

eta

A =

pqr

3

2
ff f exp {2bt cos 6 + 2ct cos ¢ + 2dt cos Y}
0

x cos pfd cos q@ cos rydf do dy

= 8e'® Ip(2bt) Iq(2ct) I (2dt) (218)

where I (z) is the modified Bessel function of the first kind.
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3. Frequency Distribution Function

The remarks concerning the evaluation of the Fourier coefficients related
to A™! are pertinent also here. The triple integrals that are to be evaluated

in order to find the Fourier expansion of the generalized function.
8(«? —a - 2b cos 6 - 2c cos ¢ - 2d cos )
present the same difficulties.

Therefore if ((«? ) is needed only for the conversion of finite triple sums into
integrals, this approach will not be practical for numerical work because of the

free parameter «?. On the other hand, our method is still useful.
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CHAPTER 1V

LATTICES WITH DEFECTS AND PERTURBATION THEORY

Defects and imperfections in crystal lattices have been the subject of numerous
and relatively recent investigations [11]. The most widely used method for the
treatment of such lattices is Montroll's method of Green's functions, developed

and elaborated in collaboration with Potts, Maradudin and Weiss [23].

An outline of this method is presented below in connection with the evaluation
of the frequencies of an arbitrary imperfect lattice. Later on the discussion will
be specialized to the case of one isolated mass defect, so as to compare the re-

sults with those obtained from perturbation theory.

Let us assume that the dynamical matrix associated with an imperfect lattice

is
A=A, - A (1)

where A, is the dynamical matrix connected with the perfect lattice, while A’ con-
tains the deviations of the imperfect from the perfect lattice. The characteristic

equations can be written as usual
(A-ADu=0 or (A, -AI-A")u=0 2)
in which u is an N-dimensional column vector.
Eq. (2) can be rewritten as follows:
u=06GA"u (3)
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G is the Green's matrix of Ay,
G=(4, - D™ (4)

defined for all A not on the spectrum of A,. Eq. (3) can be useful in solving for
uby the method of successive approximations. More important is the fact that if
only a few of the A’ —elements are non-vanishing, then one can find the character-
istic equation explicitly in terms of the Green's matrix elements from .eq. (3).

It is essential therefore to possess explicit expressions for the elements g, of

G. In eq. (22) of Appendix D these elements are given by

N

T, T}
g = E —e— (5)
T Mo T A

in which A{®> and T  denote, respectively, the eigenvalues of A, and the elements

of its diagonalizing matrix T. For generalized matrices the scalar indices will

be replaced by vectors of appropriate dimensionality.

For the case of one-dimensional systems with simple A’ perturbations,
the characteristic equation can be written down directly without using Green's
functions. For higher dimensional lattices, the method seems to be indispensable
for finding the characteristic equation of the perturbed lattice, even though the
exact forms of the Green's functions are not known, i.e., the sums in eq. (5)

cannot be evaluated in closed form.

It is clear that once the characteristic equation is known, the mode of its

solution is independent of the Green's function method. The same applies to the

evaluation of the eigenvectors u of eq. (2).
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In the rest of this chapter we apply second order perturbation theory to a
monatomic linear chain with one isotopic impurity, symmetrically situated, and

rigid boundary conditions.

We assume therefore

By = Vo P (D g =at Sy 4y 8p e (6)

with

a=2a-Ms?: b

= —-Q
(7
a' = - eMo?; e:l—i
M
The eigenvalues of A, are
A9>=a+2bc052:f2; k=1, ..., 2n41 ®)

In the remainder of this chapter we shall use the notation 6= 7»/2n + 1. To
apply perturbation theory we first bring A, to diagonal form by performing the
similarity transformation T given in eq. (12) of Appendix E. Then the matrix

to be treated by perturbation is

H=H, +H (9)

with

— (0 . ¢ _
(Ho)rk_x(k)srk’ H{j” n+1

. omd . mj
i 3 10
sin 2 sin > (10)
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Since the eigenvalues A{?) are simple we can use ordinary perturbation theory.

Then to second order in a’ the eigenvalues A, will be given by:

' 2
Akza + 2b cos ke-na+1 <sinﬂl—(—>

2n+1 <sin W—r)z .
a' 2 . 7k 2 2 11
+ sin = (1)
n+l 2 2b (coskf - cos r6)

r=1

r){k

It is clear immediately from the form (10) of H', and eq. (11) that for k =
4

2j; j=1,...,n, we obtain to all orders

_ 2 (0) _ Ty, .
)\2j_>\gj)_a+2bcosn+1, j=1, ..., n (12)

Note that the eigenfrequencies in eq. (12) correspond also to a monatomic linear
chain of n particles with rigid boundary conditions. The result that n frequencies
are not perturbed by an isotopic mass defect situated at the center of symmetry

can be arrived at also by purely matric methods.

Returning to eq. (11) and putting k= 2j -1; j=1,..., n+1wecan
write
N a’ 1 a' \? o 1
., =a+2bcos(2j-1)0 = — + —
21 77 2i-1 n+1+2b<n+1> Z cos(2j —1)O-cos (2r-1)6
r=1
o

The restricted sum in eq. (13) can be rewritten as follows
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n+1 2n+1

1 1 ,
Z cos(2j -1)8 -cos(2r-1)6 Z cos(2j -1) 6 -cos 8

r=1 r=1

g #2j-1

- ! (14)

=7 cos(2j-1)6-cos L

n+

The unrestricted sum in eq. (14) can be evaluated in closed form by using

eq. (6) of Appendix D with

- 1 -1 _yn—l1
F(\) T [y \' ]

U=vVA2_-1; V=x4U (15)
Then
F'OD = -2 FOO s 2t pyen [ yoem1) (16)
U2 U2

Substituting cos (2j - 1)6for A in F'(\)/F(\) we obtain the value of the un-

restricted sum

1 _ COS(2j -—1)6 (17)

™

cos(2j -1)6-cos TF_ sin?(2j-1) 6

r=1
n+

To evaluate the restricted sum on the r.h.s. of eq. (14) we have to use

formula (16) of Appendix D, this time with
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F(\) =% [v2n?2 _yT2072) (18)

where U and V are as defined in eq. (15). For this function we have

F'(\) = __)_\_ F() + 2n 4+ 2 [V2n+2 . V’2n"2]

u? U?
(19)
2 2
oy = | 2naD?-l 2020 gy A gy #02 DA oyt yoza-zy
u? Ut u? ut
Substituting cos (2j -1)6 for A in F'(\)/F'(A) we finally obtain
2ntl1
Z 1 ::'3_ cos (2§ -1)6 (20)
cos(2j -1) 0 -cosrf 2 ¢in2 2j-1) 6
r=1
r£2j-1
Collecting results we can write for A
[ ’ 2 .
Nyi-, =a+2bcos (2j -1) 6 - aa 1 /a cos(2j - 6
] ni+1 4b \n +1 sin2(2j—1)6’
ji=1,....,n+1; 6 m (21)

:2n+2

It can be shown that the contribution to X 2i-1 from third order vanishes identically
=

and it is probably true that all odd order contributions vanish.

We proceed now to the evaluation of the eigenvectors to the same order of
approximation. These are linear combinations of the eigenvectors u(r 0) for the

unperturbed lattice. In our case the components of u{?) are
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w(® =__1 sin mrd ;i 4
L /ol 2n + 2

=1,...,2n+1 (22)

Then if u is the eigenvector associated with N of eq. (11) and u L its

components, we obtain on using eq. (22) and second order perturbation theory:

, « 2n+1 sin% sinr46
up = sinkf-—2 _ sin ™
k /n+1 2b(n+1) 2 coskf-cosrf
r=1
rf/k
2] 7\ 2
2n+1 in_® si A 2n+1 in -
) 1 a2t \2 Sinfﬁ n sin 3 sinptd n (51n 2)
4p2 \n+1 2 coskf-cosph cos kf - cos r8
p=1 r=]
P/*/k r}(k
2n+1 sinZL sin 46

1 < a’ )2 (Sin wk)3
4p2 \n+1 2 (cos k& - cos rg)2

r=1
r)*/k
2
, 2 2 2n+1 (sinw_;)
_L(a ) (Smﬂ_)smk,ﬁgz ;9:._?.;{,‘(:1,--,20{»1
8b2 \n+1 2 —7 (cos k6 - cos r6)? 2n'+2
r%k

(23)
All of the sums in eq. (23) can be evaluated exactly when use is made of the
results in Appendix D. We denote these sums by S,,m=1,2,...,5according

to their order of appearance in eq. (23). It is also seen that S, and S, are

identical.

From eq. (23) we immediately find that for k =2, j=1,...,n, uzj.coincides

with ug ?) . Again this result can be shown to be exact by using matric methods.
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We consider now the sums S, for k = 2j-1, j=1,...,n4+ 1. Then the

sum S, is identical with the one exhibited on the 1.h.s. of eq. (14), and we have

Sazl cos (2] -1 6 (24)
2 sin2(2j -1 6
The sum S5 can be written as follows:
S, =S; - S; (25)
where
2n+1 L n 1
' _ . 0 _
% = 2i-1) 6 0?2 5 = 7V
—=7 (cos(2j - -cosr e <cos(2j-l)9—cos——>
%21 n+l
(26)

The sum S; can be easily evaluated on using formula (20) of Appendix D with

F(\) given in eq. (18) above:

g 16 (n + D2 sin?(2j -1) 6 -17 cos? (2j -1) 6 -16

5 27)
b 12 sin* (25 -1) 6

Similarly the sum S;’ can be evaluated by using formula (7) of the same

Appendix with F()\) as given in eq. (15). The result is

g" :(n +1D?2sin?22j -1 6O -1 (28)
5
sin* 2 -1 6
Finally
SS:4(n+1)2 sin?(2j -1)6 -17 cos? (2j -1 6 -4 (29)
12 sin? __._.W(Zj -D

2n + 2
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The sum Sl can be written as

1

S1 :5 [S; + S;’] (30)
where
S; 2n+1 m=n,1- £
- Ccos mr9 (31)
cos (2 -1) 6 - cos rf8
r=}
S: %2j-1 m=n+14+4

For 1 <m<2n +2 the sum in eq. (31) can be evaluated by using formula (15)
of Appendix D, with

f(}\) - V2n+2“m + V"2n"2+m
(32)
F(A\) = U [V™2*2 _y~2072]

The result is

2n+1

Z _cos mr 9 - 1 {1 - (-D"+ [1+(-D"] cos(2j -1)6
cos (2j ~1) O -cos10 5in2(25-1)6

r=1

r#2j-1

+c0s(2j~-1)mbcos(2j-1)60-2(2n+2-m)sin(2j-1)mfsin(2j —1)9}

(33)
If we assume £ < n 4+ 1, then both values of m in eq. (31) satisfy the restric-

tion 1 <m < 2n + 2 for which eq. (33) is valid and we can write for S,:
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1

S1 =
2sin?(2j -1)6

{1 Sty 1y et cos (25 -1 6

—2(n+ 1) sinl(_?jz___l)

sin(2j -1)9cos(2j-1)/&9}; {<n+l (34)

For 4> n + 1, the sum S| becomes

2n+1 . .
S;’ _ Z (-1)F cos prb (35)
cos (2j -1) 8 —cos 18
r=1
#2j-1

where

P = ’8 -n-~-1.
This sum can be readily evaluated by using formula (15) of Appendix D with

f(\) =VP 4 V7P
(36)

F()\) -U [V2n+2 _ V'2n"2]

The result is

Sll _ 1

‘= {1-(-1)P+[1+(-1)"] cos (2 -1) 6
2sin?(2j -1) 6

—2p sin (2j - 1) p6 sin (2j - 1) 8 - cos (2] - 1) pOcos (2j - 1) 6} @7

Finally combining eq. (37) with the result in eq. (33) (for m = 4 - n -1) we obtain
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S - 1 {1 = (= 1Ym0 + [1 4 (- 1yt071] cos (2 -1)6

b 2 sin?(2 - 1) o

+2(n + 1 sinﬁgjz;lz

sin (2j -1) 8 cos (2§ - 1) 41@} ; 4>n 41 (38)
The last sum to be evaluated is S,, which again can be decomposed into two sums

1 [ n
where

S; 2n+1 m=n+1_-4

cos mrf

(40)

= Z (cos (2j - 1) 0 - cos r6)?

r=1
S;' r%Zj"l m:n+1+/ﬁ

The sum in eq. (40) can be written down by using formula (19) of the Appendix

with

f(}\) - v2n+2—m + v‘2n"2+m
for 1<m<2n 42 (41)

F(\) = U[v3*2 _y~ 272
and

fF(AND) =V v ™

for 2n +2<m<4n +4

F(}\_) — U [V2n+2 _ V—2n’2]
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The results are:

2n+1 5 (
- cos mr _ 1 1-“[(_1‘)‘“_1] cos(2;-1)¢
— [cos(2j-1) 8 -cos rf}2 2sin*(2j-1)6
r#2j-1
-[14+(-D") [1+c0s?(2j-1)6) + (2n +2-m)?cosm(2j -1)Osin? (2j -1) 0
+20@n+2-m)sinm(2j -1)Pcos(2j-1)0sin(2j -1)6
.-.l-cosm (2j —1) 6 cos? (2j-1) 6 - cosm(2j -1)0 [4sin? (2j-1)6+
2 3sin?(2j-1@
+15cos?2 (25 -1) 6 -4(n + D2 sin? (25 - 1) 9]}
;1 <m<2n ¢+ 2 (43)
and
2n+1
Z (- 1) cos prd _ 1 {2[(_ 1) - 1] cos (2j-1)6
— [cos(2j -1)0-cos ro]? 2sint*(2j-10
rf/2j"l
-[(-1)P4+1] 1 +cos?2(2j-1)8] +2pcos (2j -1)Fsin(2j-1)0sinp(2j -1)6
-p?cosp(2j - 1) Osin? (2] -1)6+%005p(25 -1) 6cos? (2j -1 O
£ C085P21 -DO 14650225 —1)6 4 15 cos? (2j - 1) 6
3sin? (2j-1)6
-4(n + 1?2 sin?(2j - 1) 9]} (44)
where

1<p=m-2n-2<2n and m>2n 4+ 2.
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On using these results with the appropriate values of m from eq. (40), and

inserting in eq. (39), we obtain

1
4: . 4 .
2sin (25 -1)6

S {2 [(-—1)““"{-1] cos(2j-1)0- [(—1)"+1"€’+1] [1+cos?(2j-1)6]

+28(n + 1) sinﬂ_(.z_%.—__l_)

sin?2(2j-1)8sin £(2j -1) 9

s2n+ D sin”@I =D 025 Z1)6c0s (25 ~1)Osin £ (2] _1)9}; 1<4<n+1
and (45)
S = 1 2[ {‘n"l . ’ﬁ"n"l 2 :
4 = (-1) -1lcos(2j -1 6-[(-1) +1] 1 +c0s? (25 -1)6]
2sin* (2j -1)6

+2(n + 1) (2n + 2 - 4) sin

M sin? (2§ - 1) Osin4(2j - 1) 8

7(2j ~1)

+2(n +1) sin sin (2j -1) 8cos (2j -1)0 cos £(2j —1)8};n+1<452n+1

(46)

Returning to the perturbed eigenvalues of eq. (21), we remark that using the

techniques developed here one can obtain

2n+1

N =(2n+Da-a' =3r (4, -4") (47)

k=1

where >\2j are as in eq. (12) and Ayj-y @8 in eq. (21). This shows that in this

1
order of approximation the sum of the approximate eigenvalues is equal to the sum

of the exact eigenvalues of A, - A".

The approximate perturbed frequencies of the linear lattice are obtained from

the equations
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}\. :O; j:l,...,n+1 ' (48)

with }\2,'—1 from eq. (21). All of these are quadratic equations in (2 except for
the particular case n=2r, s = 1,2, ..., whichleads for 2j -1 =n+1 to the

particular frequency

2 2a € € 2 .
_2a )y 49
T e T P | (29)

In all other cases we solve for «? to second order in €, choosing those solutions

of the quadratic equations resulting in real «'s:

+1 S77(2]—1)

4 2j - 1 AT 2
w2_ 23 in? 72 -1 gy €, n + € (50)
! M 4(n + 1) n+l 1+COS7T(2J—1) ni+l
2n + 2

Eq. (50) shows that the perturbed frequencies will be decreased or increased with
regard to the unperturbed ones, according to whether ¢ < 0 (a heavier impurity
mass) or ¢ > O (a lighter impurity mass). This is in agreement with general
theorems of Rayleigh [24] concerning the effect of additional constraints on

arbitrary vibrating systems.

It is of interest to note that if we put 4a/M = wi (w, is then the top of the
frequency band) and take ¢ > 0, one of the frequencies in eq. (50) will emerge

above w, as n becomes large. This can be seen by considering wgn*’l :

[l V)

1 1 il
€ 7% 2 € (51)
2 - Wy C 2 i 1
“ann1 °* A ) Tnr1 ( >
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Proceeding to the limit n -~ o in eq. (51) we find

. 26V
wio =1lim wgnﬂ = wi {1 + (-;-)} (52)

This is the frequency of the '"localized'" mode, and has been obtained here
directly from perturbation theory, in contradiction to statements that this is
impossible [11]. Montroll & al. have shown [8] that the exact localized mode
frequency can be obtained by proceeding to the same limit from the original

eigenvalue equation. Their result is

2
w
wl =L (53)
2 - ¢€?

The discrepancy between eqs. (52) and (53) to second order in ¢ is due to a

difference in boundary conditions.
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APPENDIX A

EQUATIONS OF MOTION FOR TWO- AND THREE-DIMENSIONAL
RECTANGULAR LATTICES

1. Two-Dimensional Lattices

1.1 Free Boundaries

Let us denote by

u{ . m
ug - (1)
V,{ m
the displacement of the particle located at the site /éal +ma,. Then we can write,

for particles not situated on the boundary, the equations

a 0
dzu,ﬁ "
M {ugy o -2up o+ u,g_l’m}
dt? 0 o
a
g0
+ ) {u’ﬁ,m+1 _2u’€,m + u’E,m‘l}
0 B
v o8
+ < {u’ﬁ+l,m+l - 2“’E,m + u/ﬁ“l.m"l}
& o
v -9
+ < > {“)C—l,mﬂ -2uy o+ “{+1,m—1}
-5 9

(2)
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in which £ =2,. .., N, - 1; m=2,... ,Nz—l,andwhere

a—_al,a':a;, IB:az, B':a; h
a? ag
PPN, SRR EPRE (R
af + ag af + a2
a, a
§ =1 2 (ay; - a3)
2 2
aj + a; )
If we write
ug = Ug,, e @)
the eqs. (2) can be put in the reduced form
AUy +BUp,, .+ Upoy od +CIUg 4y b Ug -]
# D0y ey #UR g g JHE DU g 4 Ufss, i) =0 (5)
where
2(a + B +2%) -Mw? 0
A=
0 2(a’ +,B+2’y')—Mw2
(6)
—a 0 -8 0 -y -8 -y 8
B = ; C = M D = 4 E:
0 —a' 0 e -8 -9 s =9

In writing down the egs. (2) use was made of egs. (60) and (61) for finding the

appropriate force density tensors A, B, ..., E.

One can write down the equations of motion for particles on the boundary in
a similar fashion. These will differ from eqs. (2) since a smaller number of
neighbors is involved. Here we shall only incorporate results in the dynamical

matrix.
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It is not difficult to find the dynamical matrix if one adopts the particle
labeling shown in Fig. 3 of Chapter I. Using this one-dimensional labeling and
the reduced equations of motion, one obtains the dynamical matrix exhibited in

eq. (62) of Chapter I, with

A =A+B+D+E A, =A+B+C+D+2E

A,=A+C+D+E A =A+B+C+2D+E ) (7)

and A,B, ..., E asin eq. (6).

1.2 Rigid Boundaries

With the same notation as above, the equations of motion for interior particles
are as in eq. (5). The equations for marginal particles are obtained by using
eq. (2) and the observation that a rigid wall, by definition, cannot move; i.e., its
displacement vector u is zero. The changes obtained when the appropriate u's
are suppressed, have been incorporated in the dynamical matrix for a monatomic

lattice as shown in eq. (78) of Chapter I.

1.3 Periodic Boundaries

Again for interior particles the reduced equations are those shown in eq. (5).
The periodicity of the boundary conditions imply that there are no marginal particles.
For instance, the particle labeled 1 in Fig. 3 of Chapter I has as immediate neigh-
bors the eight particles labeled there 2, N, + 1, N, + 2, Nl, 2N1, (N2 -1) N1 +1,
(N2 -1) N .t 2, and N2 N1 . The resulting dynamical matrix for a_ monatomic

lattice is shown in eq. (93) of Chapter I.

2. Three-Dimensional Lattices

The unit vectorse , €, n and the force constants associated with the 26

immediate neighbors of the model described in §1.3 are given below in three groups.
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1. First Neighbors

£, a §, a' oy "
{k, —k}<->al {1, -1} <—>a; {j, j}=—q]
{§, =j)=—a, {k, -k}=a;  {i, i}=>q;
{i, -1} ~-a, {3, -j}<->a3 {k, k}<->ag
2. Second Neighbors
E ﬁ § ﬁ’ n /8”
a,j +ak -a;) +3,k ] . "
By By 1 3
253 43
-a,j+a.k a,j +ak
2 3 3 2 . "
y B, - By i |5
53 223
-agj+a3k IB aaj-azk
3 1] . 1
23 423 Ay il A
a,j-a.k a,j+ak
2 3 3 2 . "
By By 15
4,3 2,3
a;i+ak ~a,i1+a k
1 3 3 l '] . "
ﬁz ﬁ2 -J 52
a3 a3
-a 1i+ak a i+a.k
1 3 1 3 p . .
—_— | 5 - B, - |5
a3 43
a,i+a.k a,i-ak
1 3 3 1 . ’
- B, B, -i |5
a3 a3
ali-a3k a3i +alk , . ,
B, a Py =J 2
a3 13
a, i+a,] -a,i+a, j
1 2 2 1 ) "
SRR LY . L A L
P 419
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€ ¢ § B n | p
-a,i+a,}j a,i+a, j
1 2 2 1 ’
_ R G kA
12 12
ai+a,j a, i-a j
1 2 2 1 ‘
- a A a Ay k| A
12 12
ai-a,j a,i+a j
1 2 2 1 . ]
. O L A
12 12

(8)

3. Third Neighbors

The eight third-nearest neighbors are equivalent with respect to the central
particle on which they act, and therefore only three force constants appear: 7y,

¥', »" associated withe, ¢, n , respectively.

€ § n
a,i+a,j+ak -a,1+a, j -a a,i-aya,j+a’k
1 J 3 2 1 183 283 12
a 2, 2,
a11—a23+ask a,i+aj —alasl+aza33+a12k
32 2,2
ai-a,j-a,k a,i+a j a,a,i-a,a,j+a? k
1 J 3 2 1 143 293 12
a 42 ST
a 1 +a -a_k a,i+a,j aai+aaj+azk
1 2Jd —2; -4 1 123 293 12
a a, a, a
-ai+a, j+ak a,i+a, ] a a,i-aya_ _j+a2 k
1 2 3 2 1 1283 293 12
a P 12 @

137



] 4 2 i a 1 a o 4 A oa + .22 1
—UILTaZJ—Gsl\ 321+41J —dld31+d2d3J+dl2K
a a, a,a
. . . . . . 2
-a11—a23+ask a,i-a j ala31+a2a33+a12k
a 22 3,4
a i+a,j+a,k a,i-a j -a a i-aaj+alk
1 2 3 2 1
a 312 3128
Here a , is as in eq. (8) and
= /a2 2 2 9
a aj +aj +aj (9)

Just as in the two-dimensional case, the equations of motion for particles

not on the boundaries are the same for all boundary conditions involved. To

write these down, we denote by uy  the 3-dimensional displacement vector of

the particle located at the equilibrium position fﬂal + ma, + na; and introduce the

time-independent vectors U,

up =g el (10)

For a monatomic lattice the reduced equations of motion read

AU’ﬁmn +B1 <U/E'1 mn t U’ﬁ"’lmn) + BZ (U’ﬁm’ln t U’{)/m+1 n)

By (U U )+ G Uy + U mirn) TC Uty i1 n +Upyy o1 n)
+Cy Uy ey + U4y ) +Cy Wy ponn Uy mn-1) +Cs (Ug 11 +Up sy )

+Cs (Up oy ey + U ey -1 + Dy Uy mm1n-1 * Uty merntr ) Dy Uty it a1 U et )

D3 Uy v ner + Uy oy nm) # Da Uty ey vy U4y ey amn) = 0 (11)
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The 3 X 3 matrices B,, ..., D, are the appropriate force density tensors

preceded by a (-) sign and are given as follows

-B, =diag(a; o; a}); -B,=diag(a;a,a)); -B;= diag(ajaza,) (12)

a'f (—1)'”3132 0 , ag (—1)’a132 0
-C. =Y [(-1)*aa a2 0 +ﬁ (-1)Ta_a a2 0|+
r 2 192 2 2 192 1
r=12 ap 312 .
0 0 0 0 0 0
+ B diag(0 0 1) (13)
2
a, 0 (-1)"+lz-11a3 ag 0 (-Dfaa,
B B,
-C, =_2 0 0 0 2 1} 0 0 +
- 2 2
r=3,4 aj, . ay,
(-1)F 1alaa 0 a§ (-D7aa; 0 af
+ B diag (01 0) (14)
0 0 0 0 0 0
/B 1]
-C, :..23_ 0 a2 (-Da,a, +_zi 0 a2 (-Draya | +
r=56 ap 0 . ) 83 0 . )
(-1) a,a, ay (-1) a,a, a;
+ B, diag (10 0) (15)
af (-D™aa, 2,3, aj (-1)7a,a, 0
-D_ :_72_ (-D™a a, a2 (-D™aa, J_'z (-1)7a,a, a? 0
r=1,2 a 41 2 42
a a, (-1 a,a, aj 0 0 0
aj aj (-1)aa,a]  -aa, aj,
t 272 (-1 a,a,a] a3 a3 (-1)" a,a;af,
St 2 r 2 4 (16)
= a,a33,, (-1)7a,a;a], a,
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T = 2 2
r:3,4 a 1 ) 312 0
r
-aa; (-1 a,a, a3 0
2.2 r 2 2
a,a3 (-1)7a;a,a3 2,333y,
y" 2 2
o T
+ (-1) a,a,a; (-1 a,ajaj,
a2a?
12 2 4 S
2 r
8,838y, (-DTaja,a), 82

The matrix A in eq. (11) is given by

3 6 4
~A=2 Z B, + 2 Z € +2 ) D +MA (18)
r=1 r=1 r=1

The number of distinct force constants in this model is 21, For a cubic unit
cell this number reduces to 9, since by symmetry a, = a, = a,;; o, = a; = ag;

ap <oy =ali B =6, = A= B = Fand B = B = B

The dynamical matrices for the several boundary conditions are obtained
without much effort by using the eqs. of motion (11) and by adopting, instead of
(£, m,n), the one-dimensional labeling of particles shown in Fig. 5 of Chapter I.

The matrices are exhibited in the appropriate sections of the same chapter.
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APPENDIX B

EVALUATION OF THE INTEGRAL

A - T cos p& cos qo d@dg
Pa o Jo a +2bcos 8+ 2ccos ¢ + 4d cos O cos @

We consider first the case p = q = 0, when an exact result can be given.

We proceed to integrate first over 4.

To perform this integration we define
A-at+2ccosyp; B=bi2dcosog. 1)
Then

a+2bcoséf +2ccosp +4dcos G cos p=A 4+ 2B cos @4 (2)

and the first integral to be evaluated is

kid
do
I- _— . 3
J; A ;2B cos @ ©)
The value of I is given in [16] where different parameters are used. Our

needs here require that we give all possible cases in a different form for the

more general integral I :

I = i cos nf do =
n 0 A ;+2Bcos & B
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2 2 \n
= R
A2 _ 482

:ﬁ _ [( /AZ _ 4B? ‘A>" _ <_ /AZ _ 482 +A>“} . Al <28 (4)

2 /A7 _ 4B 2 -
L (In this case the integral exists only as a principal value)
where
+1 A>O0
sgn A = (5)
-1 A<O.
Then

sgn A |A| > 2]B|

I = A? _ 4B?
(6)
0 otherwise .
We assume now that the following conditions are satisfied by b, c, and d:
b, ¢, d<0; |b] 2]|c|>2][d|. (7)

Then it is clear that B < 0, and we have to consider the two possible cases for
all ¢: i) A < 0; i) A > 0. The case A= 0 can be obtained as a limiting value
from either i) or ii). If A vanishes for some ¢'s, the same treatment can be

given for the subintervals where the cases i) and ii) are pértinent.

i) A<O

Here the conditions |A| > 2|B| and 0 < ¢ < 7 imply

-(a + 2c cos @) > = 2(b 4+ 2d cos 9) (8)

or using (7)

a+2]b|

>t (9
2(|c| -2[d])
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Let us define now

_ a4+ 2|bl
us— (10)
2(lc] - 2]dD

The remaining integral will not vanish only if u < 1 since -1 < cos 9 £ 1. This

condition places a restriction on the possible values of the parameter a.

Then
AOO:_nf _de (11)
0 VA? _4B?
The substitution x = cos ¢ in eq. (11) yields
Ay = -7 f dx (12)
/(1 -x%) [(a-2lc| x? - 4(Jb] +2]d| x)2]

where the limits of integration will be determined by considering the two pos-

sibilities: u > -1 or u < -1,

(1) u< -1

+1
Ago = = j dx (13)
2x/|c]2—4|d|2 -1 /(l—xz) (v - x) (u~x)

and

a - 2|b|
2(fc| +21dD

(14)

v

The integral in eq. (13) can be transformed into a complete elliptic integral
of the first kind if the location of v with respect to the interval [-1, 1] is given.
For definiteness let us assume that v < u. Then a substitution prescribed by

Erdelyi [15]

s 2
x:u-1-2us1n¢ (15)

1-u-2sin?¢
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leads to the result

i4

/ECI2 - 4]d)? V(1 —u) (=1 -

(2) u> -1

Again assuming v < u, we have the subcases v < -1 and v > -1. Then

the integral Ao is given by

A - 7 f+1 dx
00 ~ ~
2v/|c|2—4]d|2 u /a—xz)(v-x)(u—x)

1 g Gﬁl-@(-l-w>;v<_1
VI - V) 2(u = V)

v

Ay, = - 7 1 K ( 2(u - v)
v) \ (l—u) (—l—V)

lc|? - 4]d|?

1 K<‘/(1—u)(1+v)
V({1 - v) (1 +u) (1 —v) (1 +u)

Here the conditions |A| > 2 |BJand 0 < ¢ < 7 imply

ii) A> 0

a+2ccos @>~2(b 4+ 2d cos )
or using the inequalities (7) and definition (14) we get

COSsS 9 < V.,

) (16)

where K (k) is the complete elliptic integral of the first kind of modulus k.

(17)

(18)

(19)

Hence if v < -1 the integral will vanish and two subcases have to be con-

sidered: (1) -1 <v < 1l and (2) v> 1.

1) -1<v< 1

The substitution x = cos ¢ in eq. (11) yields in this case

A - T fv dx
00 —
2/]cl? = 4ld|? 1 V1 - x?) (x - v) (x -u)
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As before we assume y > v.

The final result will again depend on whether

u > 1lor u < 1. Performing the appropriate transformations we obtain

A

00 ~

K

VkP-4HP<

(

> uc<l

1 ‘/(1+v)(1—U)
V(1 =v) (1 +u) (1-v)(1 +u)

(1+v)y(u-1)), u>s1 (21)
2(u -v) 2(u -v) ’
2 v> 1
A similar procedure produces the result
A - T fﬂ dx
00 =
2V|c|? - 4]d]2 Y1 /(1 -x?) (x - V) (x -u)
\
- ¥ii 1 K<‘/ 2(U—V) ) . (22)
lc|2 - 4]d|2 V(1 +v) (u-=-1) (1 +v)u-1)y

We return now to the general integral qu,

for which an asymptotic approxi-

mation is required when both p and q are large. We follow here Weiss et al.[41]

who, in a different context, have evaluated a similar integral by making use of

certain asymptotic results of Duffin [42].
that the main contribution to qu

point of the denominator, located here at (6= 0, ¢ = 0).

The argument is based on the remark
comes from the neighborhood of the stationary

Expansion of the

denominator around this point leads then to

Amff
Pg
0 Yo

This can be written also as

cos pf cos qo df dg

. (29)
a+2b42c +4d - (c+ 2d) 92 - (b + 2d - do?) 62
A '“f"fw cos qo cos pd dddo (24)
P Js Jo C + D&?
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with
C=a-2(b| + lel - 2ldD) + (lc| +2]d]) o
(25)
D= |b| +2[d| - |d| ¢? J
The range of integration over 6 can be taken as (0, o) with an exponentially

small error, since we assume p to be large:

m [0
qu ~ f do cos q@ f M X (26)
o 0 C + D&?

We consider first the case sgnC = sgnD, for all ¢'s near ¢ = 0. This implies
a 2 2|b| +4|d when eq. (7) is used. The inner integral is then an ordinary

Fourier cosine transform and from Tables [19] we find:

mw
dg cosqo 7 /D C
qu~f —B—EVE”"{‘PVD

0

m
:z.J° €05 A9 4 _p1/£ do . (27)
2 0 V@ D

Since q is large we expand this result once more, this time in the neighbor-

hood of ¢ = 0, and extend the integration over (0,x):

in which
/
p=V5-2”“+|4+2““; . ald| + |bc]
bl +2|d| 2(1bl +2]d])3/2 [a - 2(|b| + |c] + 2]d])]1/2

R = [(a-2(Ib] + [c] +2]d[» (|b] +2

d[)11/%

.

g (el +2ldD ([bl +2]dD) - ldl{a-2([b] + e +2[d])]

8 R (29)
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We assume now S > 0. Then the integration in eq. (28) can be carried out
[19]:

qum ﬂi— e PP e‘/:’_"R/S e aVR/S Erfe ]/RPU- q}_
8 VRS S 2/po

+eR/S Erfe 1/M+ q____ . (30)
S 2 Vpo

For q — « the dominant term is the first one in the square brackets.

The case S = 0 leads again to a well defined result. Since originally we
have considered values of ¢ only in the neighborhood of the origin, we disregard
the singular case arising from S < 0.

We still have to consider the case sgnC # sgnD, for all ¢ near the origin.
This will occur whenever a - 2 (|b|+|c| + 2|d|) < 0. Then the inner integral in

eq. (26) exists only as a principal value and we obtain

A ~-T f cos qg sinpl/:E do. (31)
2 0 ‘/_CD D

Expanding the functions v- C/D and v-CD around the origin ¢ = 0 and as

before letting the upper limit of the integration go to infinity, qu can be written

as
pqm_zf €98A9 inplyt - o' e?] do (32)
2 0 Rl —SIQ)2
in which
f
. [ablilels2lab -a ald] + |bc]
os bl + 2]d| ’ 2(bl +2[d}3/2 [2(Ib] + le| +2[d]) - a]*/2

[2(lbl + |c| +2ld]) -a) (Ib] +2]a1*/%

I

- (Ibl +2[dDy (lel +21dD + @(Ib] + ] + 2]dD-a)d]

R’ (33)

.
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The integral in eq. (32) can be evaluated in the sense of a principal value by

considering the integral of the function

el sinp [p' - o' 2%

where o? = R'/S’, along the contour shown in the figure.

™
-a

9- [ ]
0 a

The final result, obtained from residue theory, is

2 7 '
quw-_l——sinq /5' sinp[p'-a'B.{]. (34)
4 /RS’ S S
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APPENDIX C

FOURIER SERIES EXPANSION FOR

S(a-w2+2bcosc9+2ccos 9 + 4d cos £ cos Q)

In the following we adapt the one-dimensional procedure of Lighthill [17] for

expanding a generalized function in a Fourier series, to the two-dimensional case

and apply this on the function of the title.

Setting

w
§(a —«? + 2b cos 6 + 2¢c cos ¢ + 4d cos 6 cos ) = E A eimd oin®

m,n==©

the Fourier coefficients will be defined by

o o] o]
A -1 do e™in® v (_9_) dg e"inf y (ﬁ)x
™ 42 27 — 2m

—m

x $(a -a? 4+ 2b cos 8 + 2c cos ¢ + 4d cos & cos )

where the unitary functions U(x), V(y) have the following properties:

@

Z U(x + m7m) = 1; Z V(y +nm) =1

m=—® n=—o

for all x, y, and

U(x) =0 for x| 21 A
Ux) +U(x-1)=1 for 0<x<1

Viy) =0 for Jyl|21 (
V(y) +V(y-1) =1 for 0<y<1 |
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Let us denote by 6% the real roots of the equation
a-w? t2ccos @ +2(b4s2dcosp)cosf=0 (5)

considered as an equation in 4. Then

Yo+ 2rm
Gt = r=0, £1, £2, ... (6)

r

-+ 2r7w
where  is taken as the principal branch of the function

-1 @ —a-2ccos )
2(b + 2d cos )

Y = cos

On the other hand the transformation properties of the §-function lead to the
representation
$(a -=«? 4+ 2b cos O + 2c cos ¢ + 4d cos 8 cos @) =

. 1 $(6 -6  §(6-067)
_ D, 2D (8)
— 2|b+2dcoscp‘

|sing*|  [sin 6]

=
Inserting eq. (8) in eq. (2) and performing the integration over ¢, we obtain:

[e0]

A =L | gpeine v(&)
4772 27

1 X
2|b 4+ 2d cos ¢

-0

® . a4 _ - =
9+ "1m¢9r g 1mt9r
Slese@is)
27/ |sin 6] 27/ |sin 6|

==~

Using now the form (6) of ef and taking account of the summation formula
(3) for U(x), the sum in (9) becomes simply

2 cosmy
lsin ¢l
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Therefore

A - _1_ f dcp cos m\l] e“inCP V (_S)__) . (10)
™42 J |b +2d cos ¢| |sin y] 27

The function of ¢, the nth Fourier coefficient of which is to be evaluated in
eq. (10), is now an ordinary function and its Fourier coefficients are defined in

the usual way (Lighthill[17]). Hence

1 cos my

- dCP e-incp
mn .
472 J, |b +2d cos 9| |sin y|
i cos my cos ng
_ 1 f P do. (11)
272 Jy |b + 2d cos 9| |sin Yl

There exists a restriction on the integration over ¢, since the assumption that
the principal branch of (7) is to be taken, namely 0 < ¢ < 7, leads to a condition
on @:

<w2—a...v2CCOSCP —<_ 1. (12)
2(b + 2d cos )

To find the limits of integration over ¢, we must assume something about the
parameters a, b, ¢, d (the range of values of «? will follow automatically). We

make the following choice
a>2bl +2]c| +4ldl; Ibl2lc]>2|d; b,c,d<0 (13)

which represents the situation most frequently met in practice. Then solving

for cos ¢ in eq. (12) and using eq. (13) we obtain

v<cos psLu (14)
with
_a-o +2]b| . ,=a-o-2[b| (15)
2(]c = 21d) 2(|c +21dD
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Since the largest possible range of cos ¢ is -1 < cos ¢ < 1, we have to con-
sider the positions of u, v relative to the interval [-1,1]. A detailed analysis

of the possible cases (under the assumptions (13)) furnishes the following re-

sults (a change of variable cos ¢ = x is implicit below):

( 1
- f dX ¢ (x); a-2Ib|-2]c| -4]d| <o? <a-2b| +2]c| +4]d|
2772 v /1_x2 '
~1lc<vclcu
1 ! dx 8—21b!+2!c]+4|d]<w2<a+2|b]_2|c|+4ld1
Amn :< j fm n(x);

27 Jy V1 -x? ' ve<-1l<lcu

1 (" ax a+2|b] =2lc| +41d] <a? <a+2|b| +2]c| -41d|
J £ (x);

L2772 -1 /1 - x? ' v<-1lcucxl

(16)
in which
.2
cos n(cos™! x) cosm (co:f: "Lf:'é——_'hl)
fmn(x) = ”-v/-\b + 2dx)
2
b + 2dx| [sin <cos’1 @’ -a-2cx
2(b + 2dx)
2

cosn (cos™! x) cosm <cos'1 u_—_2_05>

= 2(b + 2dx) (17

ﬁc‘z -4]d|? /(x -v) (u - x)

We note that a change in sign of m or n leaves A _ invariant and hence the
Fourier series for the s -function will be a double cosine series. The theory of
elliptic integrals[15] shows that with f__(x) as in eq. (17) the integrals A = are
in principle reducible to a linear combination of the three complete elliptic
integrals, if a transformation to standard form is effected. For small values of
m, n this can be done without much difficulty, but for large values it is more
practical to find for A asymptotic approximations.

We give below the explicit form of A;,. Inthe evaluation we use the appro-

priate transformations prescribed by Erdelyi [15].
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___1____1( <\[(T-V)(1 +u)>

V2(u - v) 2(u - v)

A =— 1 4 ( 2(u - v) ) 18)
72 V2 - 442 1—v)(1+u (1 -v) (1 +uw

1 X ‘/<1-v)(1+u>
2(u - v) 2(u -v)

The ranges of «? for which (18) is valid are given in eq. (16).

We proceed now to find asymptotic expressions for A and consider the
three cases: (I)n<m>>1; (2 m<n >>1; (3) man>1.
Since A has different forms in different ranges of «?, we discuss below

only the first integral in eq. (16) which can be written as follows:*

- a-u? - 2lec| coso
cosn@® cosm [od ¢ 15
2(|b] +2[d| cos 9/4

1 [of s 33 lv
S f
272 V2 - 4d? Yo V(cos ¢ - v) (u - cos @)

(19)
where
-1<v<l<u.
We see that I has a branch point singularity at cos ¢ = v in the denominator
and it is desirable therefore to use an approximation procedure which removes
this singularity. Such a procedure is provided here by the stationary phase
method.

Casel: n<m>>1

Here we consider the integral J ,

COS_I v
J S S f g(9) eimf(® do (20)
442

mn

—_—
The two other integrals in eq. (16) caon be treated similarly.
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| in which

a-u?-2lc|lcose

2(|b| +2[d] cos 9

cosng -

4
glo

~

= ; f(p) = cos (21)

mos ¢ =v) (u-~cos ©9)

Note that I = 1/2 7% Re {J_}. The function f(9) has a stationary point at

¢ = 0, and we obtain:

(a - o?) |d| + |be|

2
1 279 —Zlcl' f'(o) = -

f(o) = cos”

2(1bl +21d]y /2 242 /1 - v (u -1 ([b] +2]dD
(22)
!
: It can also be easily verified that the function g(p) has the property
lim g(9) - g(o): lim g'(9) <. (23)

9-0  £'(¢) o-0 £'(¢)
Moreover, the function (g(¢) - g(0))/f’ (¢) has no singularity at cos ¢ = v and
therefore is well-behaved throughout the interval of integration. Then all the

conditions necessary for the application of the method are satisfied, and we find

werco o(2) -
m

1 _/i /bl + 2|d| 1-i
mn m (C2

_ 4d2)1/4 [(1 _ V) (u _ 1)]1/4 2

The result in eq. (24) reflects the fact that sgn f"(0) = -1 and that the stationary

point occurs at one end of the integration interval.

Finally
/ i - _ )
bl +2|d| < cosm cos'li__i.__&CI + sinm [cos™! a ‘d)}
I - 2¢|b] +2]dD 2¢Ib) +21]dD)

mn

4/m V(a - A |d] + |be| (c? - 4dH)V4 [(1 - v) (u - D]/*

. 0(&) . (25)

For this order of approximation thé result does not explicitly depend on n.
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Case 2: m<n > 1

Here we first make a change of variable:

_a-w2_2|c] cos @
2(1b| + 2[d| cos ¢)

(26)

Then with this new variable, the integral I, becomes

-«? -2/b 8
cosmf cosn ((:os"l a | I cos
do

2(lc| +2]d| cos 8)°

cos™1 ¢
Imn = _%—‘J
Vb2 — 442Y0 V(cos 6 - v') (u' - cos )

(27)

in which l

_a-a? -2]c| _a-d? 2]

= . u =
2(|b} +2{d) 2(|b| -21d)

[ 1

(28)
and

-1 <cv <1 <cu'.

The result follows immediately since now n has the role of m in the pre-
vious case also with respect to the form of the integrand. Then eq. (25) will be
valid for this case too, when an appropriate identification of the parameters is

carried out.

Case 3: man > 1

The author has been unable to find a meaningful asymptotic expression for
this case by the stationary phase method. The method of steepest descent is not

helpful either since here it becomes identical with the phase method.
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APPENDIX D

PARTIAL FRACTION DECOMPOSITION AND SUMMATION OF FINITE SUMS

Let F(\) be a polynomial of degree N, and f(\) one of degree M < N. Assume

that F(\) has j distinct roots A with multiplicities P, » such that

i
F(A) = F, I | A=A ). 1)
k=1

Then it is well-known that the following decomposition exists and is unique

; R

)
(o _fus 5 _ S @)
F<>\> FN w k=1 r=1 (}\_}\k)r

where C_, are given by

LI 7O\ Yo N
Crk = ! dppk-r { = } (3)
(pk - r)' dx F(>\) A = )\k

For simple roots, all p, =1 and the formula (2) becomes

N
g, Y @
F(M) Fy — A=Ay
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with

G = | (5)

In the sequel we shall have use only for the simpler case (4) with the further

restriction M < N. Several formulas are of particular interest:

N
F'(\) _ 1 6
FOY) Z NN ©)

k=1 k

By repeated differentiation, eq. (6) yields

N
(-n°7t o dvt FT O 1 C n>1 7
(n - 1)! d>\“‘1<F(>\)> kZ_l: A=A he )

The result in eq. (7) can be extended by analytic continuation to all real n,

the 1.h.s. of eq. (7) being transformed then into an appropriate fractional deriva-

tive [43]of logF(A).

These results suggest the possibility of their validity also for functions other
than polynomials, e. g., functions possessing a discrete infinity of zeros which
satisfy certain conditions of convergence. We shall not pursue this subject further

here except for the following, well-known example:

Let F(A) = sinA. Then formally

sin}\:T]— (A = mn) (3)

N==—mn
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and

+o©

F'N e o 1 ©)
F() = cot Z A-7n

N=-—m

A rearrangement is performed to produce convergence with the final result

@®

cot'z\:i+2>\§ _ 1 (10)
A A2 - 72n2

n=1

otherwise obtained from complex function theory.

If the A, 's are the characteristic roots of a matrix Ay, then eq. (7) gives a
| formula for evaluating the trace of (Ay-\I)™", F(\) being the characteristic

polynomial of Ay
FOV) = |y =AT ], (1)

The previous treatment can be extended in still another direction. Consider

a sum of the type

N

Ck
S(D = E _k . (12)
k=1 >\r - >\k
k£r

To evaluate this sum we define a function S(*) (A) which coincides with (1)

when A\ - xr:

N

C C, (M) c
SO (A = ko - - T 13
™ Zx_xk A=A, F(\) A= (13)

k=1 T
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The last result is obtained by substituting for the unrestricted sum from

eq. (4), with M < N. S (A) can be rewritten as follows
F(M)

f(\n) -C

M) =€ = 5

st () = o0 —. (14)

It is to be noted now that S(!) (A\) becomes an indeterminate expression of
the form 0/0, when A — A _. This is so because of the form (5) for the coefficients

C,. Using the L'Hépital rule repeatedly we find

oy TR0

Sgl) - (15)
Fi(AD) 20 ()2
A particularly simple relation is obtained for the case f(A\) = F'(\):
N F”(}\_ )
st = E 1 -1 ' - (16)
(A, -\, 2 F'(A
k£r
The evaluation of sums of higher powers
N
C
S(™ = E e (17)
n
= (e - Mo
k£r

cannot be done simply by differentiating (15) or (16) with respect to A _, since
F'(\,), F*(X,) depend on A, not only through their argument but also through
their coefficients. It is much simpler therefore to use again the same procedure

as above. We illustrate this for the sums (17) with n = 2, (2.
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We have to evaluate the expression

N

S(2) = 1lim E © &
MA G - h)? (A=A )?

i

lim 4.9 (i@) _ &
>\—’>\r dir F()\) (}\ - )\r)Z

I

£'OOF(N) - f(OF' (M) +C, [FO‘) ]2
. (18)

=-1im

A=A [F(\)12

Again the limit process leads to the indeterminate form 0/0 and we make

use of the L'Hopital rule several times to obtain:

fron sy FOOF' ) F) [F'(A))]?
T + -
2F' () 2[F' (A )]? 4[F'(A )13

S(2) - _

r

FAOF (M)

—r T 19
+ 6 [F ()12 (19)

For the case f(\) = F'(A) we obtain the simpler expression

N " 2
Z 1 |y FGor 1 Froy
o (M- A 2 Fi(hp) 3 F(A)
k£r
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For powers n > 4, the formulas become quite complicated. In Chapter IV
the results in eqs. (16) and (20) are used to evaluate certain perturbation sums.
Since one seldom considers perturbation approximations beyond the fourth order,

the form of Sg“) for arbitrary integral n is not needed.

The results in eqgs. (16) and (20) can be extended to the functions discussed
in the paragraph preceding eq. (8). Thus if again F(\) = sin A and in eq. (20) we

take A, = 0, then

or

1 72

T k? 6

a well-known result, here following immediately from

F'(0) = 1; F"(0) = 0; and F” (0) = - 1.

In connection with applications below and in Chapter IV it is important to note

that if the polynomials F(\) and f(\) are known in closed form and if the roots

A, are explicitly known also, then the formulas (4), (6), (7), (16) and (20), give

closed form expressions for the corresponding finite sums.

We proceed to apply some of these formulas to the exact evaluation of one-

dimensional sums related to Green's functions of matrices appearing in the text.
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The Green's matrix associated with a given matrix A is by definition the

matrix G

G\ =(a-2I) L (21)

1f A, and T denote respectively the eigenvalues and diagonalizing matrix of A,

then the elements g,;( A of G are given by

N
T, T !
g, (M) = E _rk ki (22)
NN
k=1 k

where we assume A\ not to coincide with any of the eigenvalues of A.

It is readily seen that the sum in eq. (22) is of the type exhibited in eq. (4),

with M <N and G = - T, T.'. If apolynomial f  (\) canbe found such that

f ()
T T = - — = (23)
F'(M)
where F (\) is the characteristic polynomial of A, then
f_ (M)
g, )= 2 24)
F(A)

To illustrate the procedure we consider the Green's functions associated

with a monatomic linear chain with fixed ends.
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The dynamical matrix of this system is of the form shown in eq. (2) of

Appendix E . Insertingin eq. (22) the A, and T , there given, we find
x :_1_ N+1 N +1 (25)
g.; (M) +
N +1 - 7k 7k
= a-X\+2bcos a-A+2bcos
N+1 N +1
r,j=1,...,N

Eq. (25) shows that we have to evaluate the sum

7mk
N cos

S(m, Ny = Z N+1 . (26)

N+1 k=1 >\—a—2bcoku
N+1

Now eq. (7) of Appendix E gives for the characteristic polynomial of A

By = (- N Y ;V"N'l @7)
; with
Uz/<x—a>2-4b2;v5§___'i+” (28)
2

It is not difficult to verify that if we take F(\) and f()\) in eq. (4) as follows

F(\) = U? EN(}\) s f(A) = YN+l-m , y-N-1tm (29)
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where for the present 0 < m <N + 1, then

L O R AL P R (30)
F'(A,) N+1 N+1
and
ct. £ e © @
F'(M) 20N +1)
where

AN -at2b. (32)
Finally we can write
N4l-m -N=-14m - m
Sm =L VTV 1 1 ,.eD ] (33)
U N+l _ y-N-1 2(N+ 1) |[A-a-2b A-a+2b

Since m* =N 4+ 1 - m satisfies 0 <m’ < N + 1, eq. (33) will be valid also for

m’', with the result:

N (-1)* cos mmk . -
S*(m, N) 1 N+1 _ 1 VP4 V™®
N+1 k=1 A -a - 2bcos k U vl v
N+1
) N4l-m
_ 1 1 +(—1) 34)
2(N+1) |[A-a-2b A-a+2b

*These coefficients are related to the polynomial U?in eq. {29).
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The range of m in eq. (26) can be extended now to all integers by using eqgs. (33)

and (34)
For m = 0 we obtain from eq. (33)
N A N+1 -N~1
1 E 1 - _ 1 - a + _1 \Y +V (35)
2 N+1 _ V—N-l
N+1 k=1 >\—a—2bcos77k N+1 U uv
N+1

It is easily seen now that

-
S(r -j, N) +S(r +j, N)

r+j<N+1

e = < (36)
S(r -j, N) +S'(r+j -N-1,N)

L N+l<r+j<2N

Other sums with closed form expressions can be obtained from (33) and (34)
by addition, subtraction or proceeding to appropriate limits with the parameters
involved. For instance, in the sum (33) the left hand side can be regarded as the

Riemann sum associated with the integral

3 |r=

J cos m& d6
0 A-a-2bcos &

and letting N — @ we obtain the value of this integral on the r.h.s. The value will

depend on the position of V with respect to the unit circle.
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We also remark that these results will be valid, if none of the denominators
in the sums considered vanish, regardless of the nature of the parameters. If

a, b were operators (e.g., matrices), the sole requirement for validity would be

that these commute.

In principle the preceding treatment applies to finite sums in any number of
dimensions. However, in practice, the application of these results is limited by
the fact that the explicit forms of the appropriate polynomials are not known.

In most cases one summation can be performed exactly but the rest have to be

treated according to the methods of Chapter III.
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APPENDIX E

MATRICES ASSOCIATED WITH PERIODIC SYSTEMS

Most of the material to be presented in this Appendix, while weﬂ—boﬁ, is
rather scattered throughout the literature. Moreover the presentation there is
frequently fragmentary, partial results being given as needed for specific appli-
cations. Also most of these results are obtained by determinantal methods
which do not yield easily explicit expressions for the eigenvectors. For this
reason the treatment to follow is done mainly by matrix methods, as these allow
us to take into account more conveniently the various symmetries involved. The
matrices to be subsequently listed are those met in the text together with some
variants and generalizations which, to the author's knowledge, have not been
published elsewhere. Each one of the matrices presented is accompanied, when-
ever possible, by its eigenvalues, eigenvectors and characteristic determinant.

The matrices will be classified according to the dimensionality of the

problem from which they arise.

PartI. One Dimensional Matrices
1. Continuants
These matrices belong to particular subsets of the class of Jacobi matrices,

the latter being defined by

JN = Cl ~ n=-1 (1)
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(i) Simple Continuant

This matrix is defined by

N \\ \\ (2)

Its elements can be written in the form
(AN)ij:bBi-1,3+38i-+bS~ . ci,j=1,-"*, N 3)

) i,j-1

The characteristic polynomial is the determinant
D, ) =18y - NI (4)
It can be easily verified that 19N (\) satisfies the recurrence relation
— 2
19N = (a=-A) 19N_1 -b lQN_2 (5)

The solution can be found by putting lQN =x N and solving the quadratic equation

in x that results. The solution is

e A\ N+t
B (\) = 1 <a—>\+ (a-x)2-4b25<+1 <a->\—1/(a->\)2—4b2> jl
N __V___n.-,...i__-:_H_’_ 2 - 2
V(a-\)? - 4b?
This can be written in a more symmetrical form as follows: (6)
N+1 -N-1
iQN N = (-1 pNt1 \i -l}l -
where
U=V(h-a)?-4b2; V J_'z%i}l )
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Various representations can be given to 0 (\) when certain relations are

imposed on a, A and b. For instance, if one can write

a-A=2bcosgp; 07
then

B, (V) = (-1)N bN sin N+1)@ (9)

sin ¢

sin [(N+1) (cos™ 1 x)]

sin (cos™ 1! x)

The polynomial

is known as the Chebishev polynomial
of the second kind.
The eigenvalues A, of Ay can be immediately found from 19N (M) =0 by using

eq. (7):

=a +2bcos ; k=1,..., N 10
M ¥ N+1 (19
The eigenvectors X, = (X, ***,Xy,) can be found by putting x,, =A, £’
in the eigenvalue equation
By - I " x =0 (11)

and solving the resulting quadratic equation in £.

The normalized eigenvectors thus obtained are the columns of the matrix T

which brings A to diagonal form:

2 . 73k
T. :]/ 12
ik TYNTL SN+ (12)

T is a symmetric orthogonal matrix, T"! = T, such that

-1 _
T 14, T=A, (13)
with
Mjr = M 85 (14)
As T does not depend on the elements of A, the simple continuant matrices

commute, since all of them canbe brought to diagonal form by the same similarity
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transformation. In spite of this property, these matrices do not form a group

with respect to multiplication since their powers are not simple continuants.

(ii) Asymmetric Simple Continuant

Let Ay be here given by

N (15)

where the b, ,c; satisfy the relation
b c, =b2fori =1, N-1 (16)
In particular for bi = Ei (complex conjugate), Ay will be a hermitian matrix.

The eigenvectors of this matrix are the columns of the matrix ST, with S a

diagonal matrix the elements of which are

_ . R 1/2
S = (1€ Sy bybyyy by ) a7
and T is the matrix given in eq. (12).
The eigenvalues are
mk
A, =a +2bcos ; k=1, -+, N (18)
N+1

The characteristic polynomial {(or determinant) is as in eq. (7).

(iii) Generalized Continuant

If one inquires what is the matrix with eigenvalues of the form

N

_ 7k j ;
Ay Ta, +2 é a; cosN+i+(-1)JaN+l;k:1,"',N (19)
i=1
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and with the diagonalizing matrix T of eq. (12), one obtains the following inter-

esting result:

4 83— --- 2y 2nna
9 8- - —"'a‘N—l , .
N 1 a , V
A = a°\ N : - |3 . ‘Symmetric
N~ N S S - (20)
‘ N 1 ;N/ v
Symmetric N ’
‘ao /s
7
an+1
This matrix can be decomposed as follows:
N+1 ,
A= Z a, A (21)
ito
where
1
0. 1\ 0 0 1
0) — . 1) - ~ . A(NTL)
A =T A =1 SRR R
\\ ~ //
0 "1 17 o
i-2
—M 0
e 0-101~_
1-2 ? e // =-=~1 29
0" 0 (22)
AG) = -1 0 . ;i §=2, - N
0 /
1. s 9
~ / 1 »1-2
~ 1
0 ~0-17 0---0
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Not all of these matrices are independent, in fact

(

M

) N
;i =0, "’,—-—2 ; Neven

ANTLI=§) = L A(N+1) A(D) { (23)

i=o, E%l N odd

.

The number of independent matrices is (N/2)+2 for N even and (N+1)/2 +2 for N

odd.
An important particular case is obtained when we put a; = 0for j=3,...,N+1:
) 8, &H 0
N ~
~ \\\a
a1 . ao_ N 2
~ N ~
a ~ ~ \.a
A = 2 ~ s 1
N o N \aO (24)
~ ~ -—
< ap~8,
~
~ < a
0 ~a 1

with eigenvalues

+ 2a2 cOoS 27k

+1 N+1

7k
>\k =a, + 2a1 cos

(25)
k = 1, "',N

The determinant of A, -A I with Ay given in eq. (24) can be easily evaluated

by writing

N
la, - 21| =ﬂ Ay = N)
k=1

Using the identity
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and the form (25) of A, we can write

Tk 7k
>\k —>\:<al + 2b1 COSN+1) (32 +2b2 COSN+1>

where

_b- }/b2-4c(a—20—>\). . :b+}/b2—4c(a—2c—}\)
! 2/ 2 2/

blzv/C;b2:/é—

Then the characteristic determinant is

la, - AT =0 ) BB W)

in which the ('’ (\) are given by egs. (6) or (7) with a - A replaced by a; and

b by b;.

(iv) Alternating Continuant

Let AN have the form

where the last term on the main diagonal is v for N even and u for N odd.

Accordingly, we treat these two cases separately.
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(1) N=2n

One can write the following decomposition for A 20

By, = N y 27 \ (27)

-1

We apply the similarity transformation T of eq. (12) on 4, , with the result

-1 1] U —-v
T A, T= A+ 3 R2n (28)
where
' u4v 7k .
(Azn)k{:< 5 + 2b cos 2n+1>ék{ (29)
and
1
o 1
R, =\ (30)
n 1”7 0

Z, - % + / (31)
0 x y;n 0

It is not difficult to prove that a similarity transformation P brings Z to the

form:
Z(1)
(2) 0
p—l Zp = Z\\ (32)
AN
0 Sz(n)
where P is the permutation matrix
5, ; k=1,...,n
, 2 -1’ ? ’
Py=q (33)
8. 2(am-k+1y K=n+l,..., 2n
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and

Xy y,
Z0) - © k=1,...,n (34)
Yan-k+1  X2n-k+1
The eigenvalues of Z, are then
£ X + Xop-it1 X, = Xpppear) 35
ML) = — 5 ) t Yk Yankn (35)
k=1, , n

+ _u4v u - v\2 7k \?
AL (B) = 5 i/( 2) + <2bcos 2n+l> (36)

and these appear in the order A}, A], A}, A, . . . , A, . Theeigenvectorsof A,
are the columns of the matrix TPS, with T given by eq. (12), P by eq. (33), and
S is the matrix
S(1)
S - 5(2) (37)

~

N S(n)
in which S(%) is a 2 X 2-matrix diagonalizing the matrix A(k),

u+v 7k u-v
b
+2 COS2n+1 2

(k) —

o= (38)
u-v u+v+2bcos7r(2n+1—k)

2 2 2n +1

The characteristic polynomial of A, can be shown to have the form 192n (N

if a - A is replaced by v (u-A)(v-r) in egs. (6) or (7).
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(2) N=2n+ 1
Making a decomposition similar to eq. (27) and following the same procedure
as above we find that the eigenvectors of a, ,, are the columns of the matrix

TPS, where T is given by eq. (12), P is defined as

8j,2k‘1; k:l,...,n+1
P, = (39)
8j.2(2n+2-k); k=n+2...,2n+1
S is the matrix
g(1) 0
S(2)
S = . (40)
0 S(n)
1

where S(K) is the 2 X 2 matrix diagonalizing the matrix A,

u+v 7wk u-v
2b
t AP Cos ot 2 2

AR = (41)

u-v u+v+2bcosw(2n+2—k)
2 2 2n + 2

The eigenvalues are

k=1,...,n (42)

Agnty =Y

and their order is >q , Ao

Lo e AL A, A
n n

2n+1°

The characteristic polynomial of A, ., can be found by using the recur-

rence relation

|80y - ATL 4218, | = NI = (u =) 0, (V) (43)
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where J@zn( A) is the characteristic polynomial of A, described in the previous

subsection. The solution is

n 19 (
By - M= (=D w-nb> 3" (kX (44)
=0 b2k
Performing the summation in eq. (44) by utilizing eq. (7), we obtain
8,y -] = /222 0y (45)
2n+1 - v — A 2ntl

where 192n+l (\) is given again by eq. (7), with a -\ replaced by v(u-\) (v-XA).

(v) Alternating Continuant Generalized

Let A, ., be the matrix
u b
b v ¢ 0
N
c u \
NN \
AR TN (46)
LYSIORES \\ b
RN
0 b v ¢
c u

To find the eigenvalues and eigenvectors of this matrix we make use of a
decomposition of the eigenvalue equations, first employed by Born [25], which

is of some independent interest. Let the equations mentioned be

(8, ,, -ADx =0 (47)

where x is a 2n + 1-dimensional column vector.

We rewrite the eq's (47) as follows:

b
N 0
c. N\ .
(u-I -x%=- NN x 48
RN (48)
0 « N
¢ b
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AN 0 0. (49)
\ N :
(v-NI -x®=- N AN -x% -cx, ..

(u-A)yx, ., =-cCx, (50)

The n-dimensional column vectors x°, x° are defined by

X X
o x3 . X4
X = . N X = . (51)
Xon-1 X2n

Inserting the value of x° from eq. (48) into eq. (49), we obtain

b2, e o (u -2 (v =) bc
be B2y e o (U= (v =N be 0 0
> AN ety x :
LN Vocws e D) (52)
~ ~N ~ .
AN N ~ .
0 \\ \h’.c’-(u-xuv-m \bc 0
be bz-(u—)\)(v-)\)/ v/
Using eq. (50), we finally obtain:
a ,B\
AN
B a N 0
NN \ e (53)
0 NN < N xt =0
\\ N B
N N
B a
with
a=b2ic?-(u-N)(v-N; B=bc (54)

The matrix appearing in eq. (53) is a simple continuant and therefore equat-

ing to zero its known eigenvalues we get n quadratic equations for A :

b2 4 c? - (u-A) (v-A) +2bccos K -0, k=1,...,n (55)
n 4
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We have found in this manner 2n eigenvalues of 4,_, ;

u+v u - v\2 2 /oo 7k
= i‘/( 3 ) +(b-0c) + (2 bcc052n+2> (56)

=
N

For b = ¢ these eigenvalues reduce indeed to those given in eq. (42). Also we

have found for the components of x; :

e _ . mik | ) _
xjk_51nn+1, jizk=1, ..., n (57)
and
b
\
C \ 0
+ 1 N \
0" _ AN ‘x5 k=1,...,n (58)
+ AY
Ak—u Y AN
\cb

= 59
>\2n+1 =u (59)
with the eigenvector
X2k, 2n+1 =0; k=1, , n
T b\ (60)
X2k+1,2n+1 ~ (—;) ; k=0,...,n

Note that the eigenvectors we found have not been normalized, but the normaliza-
tion (if needed) presents no difficulties. From the mode of solution it is seen

that the characteristic polynomial of 4, ., is given by:

- 61
18, 4 =M =@ =28 0 (61)

in which §_(\) is as in eq. (6), with a- A replaced by b2 + c? - (U-A)(v-2).
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For the matrix of even order A,
n

/u b \
b v ¢ 0
NN
AN AN
c\ N
< N\
A, - NN, (62)
NN e
D
0 c ‘u b
v

no analytic results are available, since the eigenvalues cannot be explicitly found
for b # c.

(vi) Variants of the Continuant

(1)
a+b b\
0
b a \
\ \ \
A, - NN (63)
\ \ \

0 \ M b
\
b a+b

Using methods similar to those employed previously for the simple contin-

uent, we obtain the eigenvalues

>\k:a+2bcosz;—vli; k=0, ..., N-1 (64)

and the normalized eigenvectors as columns of the orthogonal matrix T

T —/3 cos (j -—1—)7-7&

ik "y N 2/ N

k#0 i=1,...,N & (65)
T.o:_l__

! VN J
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Note that all matrices A, of this type commute as they are brought to diagonal

form by the same similarity transformation.

The characteristic polynomial is

|8y = AL = (a -\ +2b) By (M)

where O,_, (A) is given by eq. (6).

@) a-b b
\
b a \ 0
\ )
A, - \ VY
N~ \ \
AN
\ \
\ \
0 \ a
\
b a-b
The eigenvalues are
_ Ty .
}\j_a+2bcosF, j=1,...,N

and the diagonalizing orthogonal matrix T is

\
r 2Tk =1/
J N N
i#N k=1,..., N »
k
TkN = - P
vN
J

The characteristic polynomial is given by

lag - AT =(a - A -2b) O, (V)

in which O _ () is again as in eq. (6).
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(67)

(68)

(69)
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(3)

b b
/a+ N 0 \
b a >
N\ NN
AN N\ AN
A =
n \ \\ \

The eigenvalues are

>\j=a+2bcosz_(j_l\;i/2; j=1,...,N

The eigenvectors are columns of the orthogonal matrix T

/%cos nk =1/2) (j -1/2)

N

=
.
1t

kj=1,...,N

The characteristic polynomial is

lay - AL} =B, -b2 0,

4)
ath b\ .
b a \\
AT =
N AN N N
AN a b
0 N
N
b a
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Eigenvalues

\
>\k+ = a + 2b cos %k_#
k=1, ..., N > (76)
- 27k
= 2b
}\k a + cos N1 )
The diagonalizing matrices T*, T~ are orthogonal
N
T - 2 Cs77(2k-1)(2j-1)
KNG 1 2(N + 1)
k,j=1...,N & (77)
T;j = 2 sin 7(2k - 1) j
VN 1 1 2N +1
J
and
|ar _AIf =(a-Xx+Db) B, (AN -b2 0,V (78)
(3)
a+c b
b
a_ . 0
A,, = C\\\ \\ (79"
NN
0 ‘ca b

b a+c

The elements on the first upper and lower diagonals are alternatingly b and c.

This matrix is associated with a monatomic linear chain with free ends and

alternating spacing constants.
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We give below the derivation of the eigenvectors and eigenvalues since it

illustrates a frequently used device in problems with similar symmetries.

The eigenvector equation

(A, -AI)-x=0 (80')

when written in full, leads to two prototype equations
bx,_,j_1 +(a = A) Xy, + CXpj4y = 0
cx,, +(a = A Xy, +bxy,, =0 (81")
j=1,...,n-=1

and two boundary conditions

(a—?\+c)xl+bx2:0

(82")
bxzn_1 +(a=A+0) X, = 0
We put
Xpi-1 = Ay?iTt, X,, = By?2i (83")
and insert in eq's (81') to obtain
(b+cy’ A +(a-N)yB=0
(84")
(a-N)yA+(c+by’ ) B=0
A non-trivial solution for A, B requires y to satisfy the equation
(b +cy?) (c +by?) =(a-N)y2=0 (85")
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or

2bce

y: :_1__ {(a_}\)2 _b2 _C2i‘/[(a_>\)2__b2 _C2]2_4b2c2 } (86')

Let us put now

(a = M2 - b2% - ¢? = 2bc cos 26

Then
y, = etif
Inserting this in eq. (84') we find
-i6 i6

B =2 +ce
a- A 1
B - bei@ + Ce-i9 A
2 = 7 a - A 2

Introducing now

X2j-1

_ i2j6 -i2j0
Xy = B1 e +B2 e

- i(2j-1)8 -i(2j-1)6
= A, el (% )¢ LA, eTi (2

(87"

(88")

(89")

(907)

into eq. (82') and inaking use of eq's (87') and (89'), we finally obtain a system

of two equations for A, A,. The requirement of a non-trivial solution for these

yields an equation for 9:

sin2nf [bB2-(a-Xx+¢)2] =0

(91')

Then, by inspection of the original matrix, we find that the only admissible roots

of sin2nf= 0 are
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7k

6, =—;
k' 2n

k=1,...,n-1 (92")

with the remaining two roots furnished by b? - (a~ A\ +c) =0.

The eigenvalues can be finally given as

A::ai‘/;2+2bccosf£+c2; k=1,...,n-1

n

> (93")

M -ascectb

n

J

For each \ there exists one linear relation between A, and A,. Eliminating
one of them and introducing its expression in eq's (90'), we obtain the components
of the respective eigenvector. The matrix T, which brings A to diagonal form

should have the normalized eigenvectors for its columns.

(6)

The eigenvalues are

m(j -1/2)
N___ b

>\j:a+2bCOS j:l,.--,N (80)

The eigenvectors are columns of the matrix ST, where

T -cosk-D G -1/2).

y 5 kK, j=1,...,N (81)

and the matrix S is given by
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S.. =< (82)

Note that while the rows of T are pairwise orthogonal, this not so for the columns

(eigenvectors), and hence T is not an orthogonal matrix.

The characteristic polynomial is

Ay = AL} = B, (A) - b2 B, (V) (83)

where again .@N(A) is of the form (6). It is of interest to note that if one puts
a - A= x, then it can be shown that |AN - Al | is proportional to the Chebishev

polynomial of the first kind, defined by

5N(x) = cos N (cos™! x) (84)

(7)

A = N \ (85)

This matrix is associated with a diatomic linear chain with free ends. We give
below the derivation of its eigenvalues and eigenvectors since again this exhibits

an approach useful for problems of this sort.
The equations to be solved are

(A, ~AD-x=0 (86)
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where x is a2n-dimensional vector. We divide now each equation in (86) by b and )

define:

§Eu->\_ 77Ev-}\ (87)

We make also the substitution

x=S-y (88)
where the diagonal matrix S is given, in an obvious notation, by

S:diag(@,wg,...,@,@) (89)

By inspection it is clear that neither u nor v are eigenvalues and hence £, 1 7 0.
We multiply now the matrix A, -AIon the left by the diagonal matrix S' defined

by
S':diag<L,——1——, _IT_.IT> (90)

This operation does not change the eigenvalues because the null space of (8, -
2D S is identical with that of ' (A, - AI) S (the null space of S’ contains only

the 0-vector). After all these transformations, eq. (86) becomes:

at+a 1 Y,
1 a 1, Y,
\ \
\ .
1\ \\ N . -0 (91)
\ \ \\
\\ ‘a 1
\
\
1 il
a+a_ y2n
in which
a E\/gn; .a = ’g_ (92)




Egs. (91) can be solved by putting

r

y. =y a=-2cosf (93)

T

in the rth equation of (91). We find then

y = Aeir? , BeTir? (94)

T

where the constants A, B will be determined from the first and last eq's in (91).

The process of elimination finally yields the eigenvalues equation
(ae-w -1) (aeie -1 (eiZnB - e-i2n9) -0 (95)

By referring to the original matrix it can be shown that the only admissible

solutions of

ei2n9 - e‘i2n9 -0 (96)
are

o K7, o _1..... n-1 (97)
2n

The two remaining values of 9 are solutions of the equation
a2 _-20cos B +1:=0 (98)

Eq. (97) yields the eigenvalues

2
A;:”;"i‘[(”;">i (2bcoslz7£); k=1,...,n-1 (99)
n

Eq. (98) when expressed in terms of £, ) becomes

én+&+m=0 (100)
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with the solutions (the so-called surface modes)

——

>\§=”;"+bi‘/(”;") + b2 (101)

The eigenvectors corresponding to the eigenvalues (99) are S; y{®*where

0
51n.77_k. sxnfk
. 2n 1 2n
' mk(r - 1) . 7kr
ygk) :ai S.ln T ‘ln—2_n_
' ' (102)
] L]
s'in 7k(2n - 1) sin fk(2n - 1)
2n 2n
0

and Si is the matrix S of eq. (89) with A replaced by >\1f , while those corresponding

to the eigenvalues A% are S7-y{%) where

+

‘ "o
yO - (&g)r (103)
@3)2"
and
af k=0,1,...,n-1 (104)

The eigenvectors presented above are not normalized. The characteristic poly-

nomial is

la, - AT| =0, (A - b< ‘v‘ :i: *\/Z :i >192n‘1(>\) +B2 0, (N (105)
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where all the polynomials le in eq. (105) have the form shown in eq. (6), with

a - A replaced by vV(u - )\) (v -A\).

We note that such analytic results do not exist for the matrix of odd order

u+b b
\
\
b LN 0
\ \
AN \
B4 = oou N (106)

though its characteristic determinant can be written down without difficulty.

2. Associated Jacobi Matrices

i) Let A, denote the matrix

a, 0 b
1 1 \
AN
0 a, O 0
N A Y
\
\ NN
N\ AN
Cl 0 N\ Y N
N NN (107)
A = N\ \ \ N \
N \ N\ \ N\ bN‘Z
\ N N\ AN
AN \ A} A
\ \ \ N
0 N 0
AN N
\ \\ \
\ N
oD N\ \

We exhibit below a similarity transformation which reduces A, to a diagonal block
matrix composed of simple Jacobi matrices. We treat separately the cases N =

2n,al'ldN:2Fl+1.
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(1) N = 2n

We define a permutation =

2n

1 2 3 4 5...2n

1 n+1 2 n+ 2 3...2n

(108)

When we apply this permutation on the columns of the unit matrix I, , we obtain

a permutation matrix P2n with the property

Note that P, is orthogonal so that P;:1 = f’;n , where ﬁ2n denotes the

transpose of P, .

a, b,
0
c, a, b4
\ \
0 c \
4 \ \
AR \
NN \
\ \
0 \ \ b2n"‘2
\
Coan-2 a

The elements of P, are given by

(e %]
[N
1t
fay
=}
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(2) N=2n+1

On applying the permutation

1 2 3 4 ... 2n 2n+1

_ 111
Tan+1 = 111

1 n+2 2 n4+3...2n4+41 n4+1

on the columns of the unit matrix I oty W€ obtain the permutation matrix

1

which brings A, ,, to block-diagonal form:

8i,23-1 j=1,...,n4+1
_ 112
(P2n+l)ij = ( )
Si,Z(j'n‘l); j=n4+2,...,2n+1
and
a4 bl\
N 0
¢, a3 N\
N \ \
\ N\
\ ‘\ bzn-l 0
N
N \
0 ©¢,.Y %2nn1
—-l -
p2n"‘1 Ai’n*‘l P2n+l - ( 3)
11
a, b2\
\ 0
\
c, a, .
0 \ \ \
\ \ \
\ \
NN
\ \ 2n-2
\ \
\ a
0 C2n‘2 2n

These reductions enable us to obtain eigenvalues and eigenvectors for A, in
eq. (107) if the resulting block matrices belong to any one of the classes of

matrices previously described.
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(if) If A, denotes the matrix

/ p-1
K—A_\
a 0...0 b
1
( \
0 a \
2\ \
\ \
\
— \\ \
AN:&< \ Py-p
\
N 0
0 \
_ \
\
C1 \
\
\
CZ\\ \ 0
N \
0 “N-p 0 -+ 0 ay

it is still possible to effect a similar reduction. This is done by assuming N = Ip+r
(i.e., N = r mod(p)), where 0 < r £ p- 1. The appropriate permutation here is

LIP defined by

pk-(p-DAsr+ks k=1,...,4 )

=}
1
—
-
=~
1
o
So

L(ns)
pk +n-(p-1-n)4 +k 4+ 1;

n:r+1,...,p—1$k:0,...,f{),—l/

The permutation matrix P, obtained by applying Tfpty ON the columns of the unit
matrix, reduces the matrix A, to a block-diagonal form in which the first r blocks
are (4 + 1) x (£ + 1) Jacobi matrices and the remaining p - r are 4 x4 -matrices

of similar type.
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3. Circulant Matrices

i) Simple Asymmetric

Let A, be the matrix

N~ N N N 2 (116)

The rows of this matrix are cyclic permutations of the first row and hence the

notation

Ay =(sys; 5, - sy) (117)

cyc

is self-explanatory. The elements of A can be written also as

. K,r=0,...,N_1 (118)

(B,
Sn-(k-r) ko>

The eigenvalues and eigenvectors can be found in several ways but the most elegant

procedure is based on the observation that A, can be written as a linear combina-

tion of powers of a single matrix,

A, = Z s, 0 (119)
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in which Q is of the form

0 1
0 1 0
. \
Q= - \\\ (120)
* \
0 0 1
1 0------ 0

7 = (121)

on the columns of the unit matrix. The powers of 7, form a (commutative) sub-
group of the permutation group, and this property is shared also by the matrix

representation Q. Since (7_ )Y = 3 (the identity permutation) we obtain

oM - I (122)

This shows immediately that the eigenvalues of Q are ei?"*/N, k =0, 1, ..

N - 1. A simple calculation then yields also the eigenvectors. Returning to A

we can write for the eigenvalues

N-1
A, = E sjeiz"kj/N; k=0,...,N-1 (123)
=0
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The normalized eigenvectors are the columns of the unitary matrix U which

brings A, to diagonal form

(124)

It is clear, from eq. (119) or the form of U, that any two circulant matrices

commute.

The characteristic determinant cannot be written down in closed form for

the general case. We give below its form for two particular cases:

(1) s;,=0;j=8,...,N-1

S
1
Ay - M| = (s, - AN - -

B
Z
|
>
L}
|
N
I
.
S’
4
1]
]
"
z
|
|
5
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Various generalizations of the asymmetric circulant are possible [26]. We

mention here one of the simplest: instead of applying the permutation 7 of

eq. (121) on the columns of the unit matrix, one applies it on the columns of an

arbitrary diagonal matrix A =diag (a, a,. . - ay). The resulting generalized

circulant Ay is of the form:

where

0 a,
! 0
o
\
o | \
Q - 1 0 \
! \
0 A
a,0--—--- 0
The eigenvalues of Ay are then
N-1 27k
}\L:E s, (Nala2 aN)eN,k:O,
]:0

and its jth eivenvector is given by the column

200
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(128)
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in which

A

2n

al a3 . aN
xN-1
i
1
!
1
i
al ak+2 T aN
xN-k
i
1
'
a1
X.
i
. 2mj

(ii) Alternating Asymmetric

We consider the matrix

u
S
A2n =
can be put in the form
u +v
A2n = 2

201

S e —
1 S2n-1
n-1 Y S1TTT T —Saa0
N NN i
AN N \\ i
AN N |
NN i
\\ \\\
~ NN
AN N
N NSt
s N
—————— 2n-1 v
u-v
S S +
1 2n-1 eye 2

(130)

(131)

(132)

(133)



where J is the same as the second matrix on the l.h.s. of eq. (27). The first
matrix in eq. (133) is a simple circulant and we apply on A__ the similarity

transformation U of eq. (124). Then

- ’ 134
A'znsU'lAan:MJr“zVJ (134)
where
Mf: T Hy Sri W
i=0, ...,2n -1
: (135)
2n-1 _27rj/€
Hoo= Y + s, e N
3 > ol
/f/:o )
and
J' = (136)
We further apply on A~ a similarity transformation P,
8j,2k i k=0,...,n-1
137
P, = (137)
O sk-2ny1 b K =Dy, 20— 1
such that
P-lA) P=diag(Ay A, ..o A ) (138)
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where

A = (139)

It is of some interest to note that the permutation P of eq. (137) is a special case
of the permutations (115) which reduce displaced Jacobi matrices. The effect of

P on a matrix A of the type

A AP
Ay, =

n

AS Ad

where the A's are n X n diagonal matrices, is as follows:

-1 1
P A P —dlag(/\l, Ay - A)
where
b
A2 A
I\r =
d
xSl

The eigenvalues and eigenvectors of A can be easily found. We summarize:

the eigenvalues of A, are

2 2
- u-v
Kf _ He T Hein + He = Frin X ; (140)
2 2 2

r=0,...,n-1
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the order of appecarance being 7\2 ‘A_‘O e A:_l Nyoqe The eigenvectqrs are the
columns of the matrix UPS, with U and P as described above, while S is given
by

S =diag(S,, S;i---» S, 1) (141)
in which S, is the 2 X 2-matrix diagonalizing the matrix A_ of eq. (139).

Analytic results, such as given above, have not yet been found for alternating

circulants of odd order.

(iii) Doubly Alternating Asymmetric

Let A2n be the matrix

o S1 - 2n-1

O'2n-1 Uo Ul P O'2n_2

Son-2 Son-1 S0 Sp-- o Son-3

A2n: O'2n_3 e . UOUI .. O'2n_4
Sy 83 Soam-1 So 51
9 9 Yon-1 “o
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Let us define now the permutation matrix P

Oy, 2 S 520 ...,n-1
_ (143)
. ij =
8k,2(j-n)+l; j=n, . .. ,2n-1
i Then
An Bn
-1 ~ 144
Pla, P= (144)
Cn Dﬂ
where A,B ,C and D are simple circulant matrices given by
_ ~N
An - (SO Sy Sq - - S2n-2)¢:yc.
Bn = (Sl S3 S5 - - - s2n-1)cyc. )
(145
~ e
C'n - (Ul 0'3 O»5 o O’2n—1)cyc.
D = (Cp Oy Tq - - - O’2n_2)cyc. J
We apply now a similarity transformation U on eq. (144),
U, 0
U- (146)
0 U

in which U_ is the unitary matrix of eq. (124). The resulting matrix is
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/ AR AB\ |
1p- 147
UlPla, PU- (147)

\AC I\D/

where A? is the diagonal form of A, AB that of B, etc. A further permutation Q,

of the form exhibited in eq. (137), brings the matrix in eq. (147) to the form

Qtlu!? P 1A, PUQ=diag(A; A, - L AL (148)
where
NN
149
A - (149)
NN

Finally the eigenvalues of A, are given by:

AA D A _ 3D\2
" - k2+>\k . /(M 2M> NS (150)

The eigenvectors are the columns of the matrix PUQS, where

S=diag(S, S; --+» S,.q) (151)
and the § are 2 X 2-matrices diagonalizing the A_ of eq. (149).

(iv) Simple Symmetric

(1) N =2n

152
ne1 Sl)cyc. ( )

206




This is a special case of the simple asymmetric matrix (116),

are

7k j

n-1

A =Sp +2 scos——J + (-D¥s

. Y i n n
j=1

- k=0 ...,2n-1

while the eigenvectors remain the same.'

(2) N=2n +1

Again the eigenvectors are the same as those for (166).

its eigenvaiues

(153)

(154)

(155)

For the simple case s, = 0, j=2,...,n there is no need to distinguish

between the parities of N, the eigenvalues of

A, = (s0 S 0...0 sl)cyc.
being given by

27k
Kk:so+251cos__,k_0, ..., N-1

N
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for which

27k 47k

Kk =Sy + 2s1 cos

k=0,..., N-1. 159)

The characteristic polynomials for (156) and (158) can be easily obtained b ~using

eqs. (125) and (126).

(v) Doubly Alternating Symmetric

Let

(160)

be a special case of eq. (142). The eigenvalues and eigenvectors are easily ob-
tained from those of (142). Below we exhibit only one particular case of (142)

which appears more frequently:

(161)

2n
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The eigenvalues are

i
n
©
=]
i+

2
0 " +s2 4+ 2s, s, cos 27k + s2
1 1 52 = 2
k=0,...,n-1 (162)
The characteristic polynomial of A, in (161) is given by

|8, = AT =0, () =s2s28 _ (A) =2(s, s,)" (163)

where (A), §__, (\) are as in eq. (6), with a - A replaced by (u=- A) (v=-2A) -
(s2 - s2 and b replaced by - s_ s, .

(vi) Skew-Circulant

Let

(164)

Making use of methods similar to the ones described above we find the

eigenvalues

N-1 im(2k41)j
A, = § sje ;k:O,---,N—l

j=0
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The eigenvectors are the columns of the unitary matrix U which brings A, to

diagonal form

L T(2j+1)k
j——

e N .k j=0,...,N-1. (166)

1
TR

Here also some generalizations are possible but we shall not be further con-

cerned with these, except for the following case of an alternating skew circulant

1 2n-1
~ |
s N l
|2n-1\ v NN :
_ AN
A, = TN NN (167)
! N NN
I N oM
| N 1
AN
| ~ v
-S,; ~Son-1

The eigenvalues are

2

N u-v (168)
2

in which

2n-1 m(2k+1)]
i

#k:“;" + E:Sje—2n (169)

j=1

The eigenvectors are columns of the matrix UPS, with U given by eq. (166),P

by eq. (137) and S by
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S=diag(S, S, --. S, (170)

where S_ is a 2 X 2-matrix diagonalizing the matrix A,

Ue-v

(171)

#k+n

We conclude this discussion of one dimensional matrices with the remark
that no restrictions, as to relative values, were imposed on any of the parameters
involved. Hence, all the results presented are universally valid. We shall see

below that this is true also for higher dimensions.

211



Part II. Two Dimensional Matrices

Introduction

It is remarked in the text that whatever the dimensionality of the problem
from which a matrix originates, the matrix is always an ordinary one, i.e., its
elements are complex or real numbers and only two indices are needed to
specify all of them. On the other hand it happens in many cases that the matrices
considered may be handled more conveniently if some partition into blocks can
be effected. This is particularly so when a large number of elements vanish.
In this fashion the concept of a generalized matrix arises. Several problems
confront us once a partition is obtained: for instance, the individual blocks may
not commute and just as important, properties of the original matrix may not
carry over to the partitioned matrix, e.g., symmetry in the ordinary elements
does not necessarily imply symmetry in the matric elements.

We exhibit below results which parallel those in Part I. It is clear that
whenever a one-dimensional matrix can be brought to diagonal form by a
similarity transformation which is independent of the matrix elements, the
corresponding result for a generalized matrix can be obtained automatically,
regardless of the commutativity of the appropriate block matrices. For other

cases though, commutativity is essential.

1. Continuant Matrices

i) Simple Continuant

Let A be the N N, x NN, -matrix

F G,
N\
G\F\\\ 0
\\\
A= o N N N
NN N 179
NN N
\\\G (172)
AN
G F
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- in which F, 6 are N, X N, -matrices. A reduction of A to block-diagonal form

can be effected immediately by using the similarity transformation TNz o L,
2
with TN2 given by eq. (12), IN1 the unit matrix and the Kronecker (or direct)

product @ being defined as follows

(TN2 ® IN:) =

kj

(TNZ) I,; k j=1,--,N, (173)
k

. 1
}

The reduced matrix A’ will have therefore the form:

o= [(TN2 ® INl)‘l A(TN2 ® INI)L& = {F + 26 cos N:’;l } S.q  (174)

Note that this reduction is independent of the commutativity of F with G.
The matrices defined in eq. (174) may be termed the generalized eigenvalues of
A. Tt is clear that the actual eigenvalues of A will be those of the N, N, x N, ~
matrices of eq. (174). Using the matrices of Part I, a whole body of results
can be obtained for all those cases where F and G can be simultaneously diag-

onalized. Here we discuss only the case of F and G being simple continuant:

A_B. RN
B. Y N 0 D \ \ O
F=| S N S N NN (175)
NN NN N
0 N \\ B 0 \\ N D
B A D C

Then the transformation I; ®T, , with T, as in eq. (12), brings A’ to
2 1 1

diagonal form. The eigenvalues of A are

7k 7] wk 7]
= 4D
)\kj A+2BcosN1+ +2CcosN2+ + COSN1+1COSN2+1
k=1, ..., N_; j:l,...,N2 (175)

1

The eigenvectors are the columns of the matrix ( TN2 @IN1 ) (IN2 ® TNl ) =

T, ® T, . The elements of this matrix (in vector index notation) are:
2 1
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_ 2 . P19y . TPy 4y
(TN @ T, ) = sin sin (176)
2 1/ pq YI(N1+1)(N2+1) N, +1 N, +1

where p = (p;,P,); q = (q;59,) andp,,q, =1, ,N; 5 Py, q=1,---, N,.

The results above are still valid when A, B, C,D become arbitrary matrices.

(ii) Alternating Continuant

Let A be the matrix

F, G
N
G F, "~
N 2
N F O
NN TS (177)
AN
A= N N \\
N G
RN
¢ F/y,

The matrices F, ,F,, 6 are N; XN, -matrices, and when N, is odd the last
F matrix in (177) is F; while for evenN, it is F,. We have to treat these two

cases separately.

(1) N, =2n,
We follow the procedure of the one-dimensional case and apply the similarity
transformations T,P, = (T,, ®IL, ) (P, oI, ), where T, is given by eq. (12)
2 1 2 1 2

and P2n2 by eq. (33). The result is

P! T;' AT, P, = diag (M, H,,- - - H, ) (178)
where
F +F F. -F
! 2+2Gcos Tk 1 2
2n2+1 2
H =
F, -F F. +F 77(2n2+1-k)

2
+2G cos——— —— /(179
2 2 2n2+1 a7)
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If the three matrices F, ,F, and 6 commute, then the same similérity trans-

formation SN (whenever this exists) will bring them to diagonal form, and we
1

write
S-1 p;l T;l AT, P,S=diag (4,, A, -, Anz) (180)
where
S=1I,, ®S (181)
and
F, .F, Fi _AF2
A +A + 2A8 cos k A -A"
n, +1 2
A = (182)
F F F F
A=A Al4+A? G
s 2 —— « 2AY cos
2 2 2n, +1

2

The N, XN, matrices AF‘, I\Fz, AC are the diagonal forms of F,,F, and G

respectively. Each A, can now be brought to a block-diagonal form, the blocks

being 2 X 2 matrices 4,;,

F F F F
RN Aon
L 1l 126G cos 7k 2!
} 2n2+1 2
A, = (183)
F F F F
Atan? N Kk
] ! ] I __2AG cos
2 i 2n2+1
i=1,---,N

The similarity transformation Q2Nl needed, is as defined in eq. (137) (there
it is denoted by P ). It is a simple matter now to write down the eigenvalues of

A, . and its eigenvectors. Returning to the original matrix A , we see that its

kj
eigenvectors are the columns of the matrix T, P, S QRwhere T, ,P, ,S have been

already defined above, and
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0=1, 90y, | (184)

R = diag (R,,.R,,," "~ R (185)

11’ nle)

The R, ; in eq. (185) are the 2 X 2-matrices which bring A, to diagonal form.
In certain applications (e.g., a diatomic lattice) we encounter the case where

F,,F, and G do not commute. If these matrices are entirely arbitrary no further

reduction of A is possible. Below we treat one particular case which admits of

a complete reduction even though commutativity does not exist:

A, B_ 0 A, B. 0
B A, \ B A, \
F, = \ \ ; F, = \ \ (186)
! \ B \ B
AN NN
0 \\\ 0 N\ |\
\
B A B A
C D
\ \\0 (187)
AN
6=l D\
\ \
0 \
D 'C

The last A's in F, F, will be AA, respectively for N, even, and A,A, for
N,odd. Tt is easily seen then that the matrix H, of eq. (179) can be written in the

form
H, = (188)

where H i are continuant matrices with elements

mk
(Hi)rj :<Bi 2D cos 2n2+1>(8"j+1 +0,. -1t

A+ A k
+<___‘ 2 4 2Ccos _" )5“ (189)

2 2n2+1
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and

-A A

:di 1 2‘ _ 1 2’.._’ 1 2’ _ ) 190
J ag( 2 2 2 2 (130)

Since the H: 's are continuant, the transformation TNl of eq. (12) will bring
them simultaneously to diagonal form. Also we have already shown how the J
matrix transforms under T in eq. (30). Hence on applying the transformation

T,=1I,, ®Tg onthe matrix of eq. (178), we obtain
2 1

TV P T AT, P, T, = diag (B, . H,, -~ - H ) (191)
where
1
M 0 0
A -4, A
L + 5 L7 (192)
- 1’/
0 M 0
‘ 1

The diagonal matrices Mi contain the eigenvalues of ﬂi . We employ now
the permutation matrix P, = In2 ® pznl’ with P,  defined in eq. (33), to bring
1

H toa block-diagonal matrix, the blocks being the 2 X 2-matrices A'kj

A . -A
#;j 12 2
Ay = ik=1,-++,n,5j=1,---,N; (193)
Al'Az
2 Fij
with
A, +A k mk 7]
t 1 2 i +2D "% _\cos_ L
Ky 3 -2Ccoszn2+1+2(B 2 cos2n2+1 N1+l (194)

Finally the eigenvalues of the original matrix A are given by

+ - + - \2 2
Bops + -y, Hoys =My A -A,
+ _kj i i i
M = ‘/(——2 +\ =5 (195)

z;jzl,...,N

k=1, ", n 1



The eigenvectors are the columns of the matrix T, P, T, P, S, where

T,,P,, T, ,P, have already been defined and S is the matrix

S = diag (S o) (196)

1Sy T

the S, ; being the 2 X 2-matrices diagonalizing Ay, of eq. (193).

(2) N,=2n,+1
It is readily shown, in a manner identical to the case of N, even, that the

eigenvalues of A for non-commuting F,, F,, G are

+ - + - \2 2
My P Mpi =My A -A,
xf(j:——’2 ) i‘/(———’2 ’) + ( > (197)

k:l,"',nz;jrl,"',Nl
where
A +A i
ITHIE 1 2i2Ccos—7i— +2 Bi2Dcos—Wl-(— cos 1 (198)
) 2 2(n, +1) 2(n, +1) N, +1

The other N, eigenvalues are those of the matrix F, , which for N, even are
given by eq. (36) and for N, odd by eq. (42), when u, v are replaced by ALA,
respectively.

Trivial changes in the transformation matrices of the even N,-case will
quickly yield the eigenvectors for the present case.

Similarly, for commuting F,,F, and G, the eigenvalues of A will be the

roots of the matrices

F Fy F F
}\j +>\j G Tk >\.1->\.2
+ 2% cos j i
2 ] 2(n, +1) )
Akj = (199)
A1\ LR .
! ! ) )\ - 2ASGcos m
2 ! 2(n,+1)
kzl, ,n2 ) j:1a ’Nl




To these roots one has to add the eigenvalues of F, in order to obtain the
complete spectrum of A.

We conclude this section with the following remark: the reductions performed
in the non-commuting case will be still valid to a certain extent if the numbers
A, B, C and D are replaced by matrices. Thus if these are arbitrary matrices
eq. (193) remains valid, further reduction being dependent on the nature of A,
B, C, D. We shall make use of this result in our treatment of higher dimensional
matrices. Here we mention one case arising in a two-dimensional lattice problem:
A, B, C and D are 2 X 2-diagonal matrices. Then eqgs. (195), (197) are valid if

these matrices are replaced by their respective diagonal elements.

(iii) Variants of the Continuant

(1) Let A be the matrix

F+6 6
\

G F %\
o (200)

and F, G areN; x N, -matrices.
We define now a similarity transformation T, = TNz ® INl » Where TN2 is the

orthogonal transformation of eq. (65). Then
T,' AT, = diag H H,, --- Hy 1) (201)
with

Hk=F+2Gcosﬂ;k:0,"°,N
N2

,-1 (202)

This reduction is valid for arbitrary F, 6. Further reduction will depend on

the nature of F, 6. If in particular F and G commute, then the same similarity
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transformation SNl will bring them to diagonal form and the eigenvalues of A

will be

where M’.‘“ and M]? are the eigenvalues of F and G respectively.

We make use of eq. (203) for the special case

A+B B C
A 0
B A\ C
SRR \ 0
F - \\ \ \ ; G = N (204)
v \
0 \ A B 0o\
\
B A+B N, C N

Then we can identify SN with TN from eq. (65), and the eigenvalues of A will
1

1
be given by:

Tk

A = A 2BC0-71 2Cc ; 205
Kj + sN1+ osN2 ( )

The eigenvectors are the columns of the matrix

T-= (TN2 ® IN1> (IN2 ® TNI) = TNZ ® TNl

Note that the result in eq. (205) remains valid even when A, B and C become

arbitrary matrices.

(2) Here we consider the alternating matrix

F, +G G
\ 0
¢ F,
\ 2\ \
A= NN\ (206)
\ \ \
0 \\ Fl G
N F,+6
G
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Again F, F, and 6 are N, XN, -matrices. If we employ the results for
the one-dimensional case (85), we can show — provided the matrices F, , F,, 6

commute and G possesses an inverse — that the eigenvalues of A are the roots

of the equations

(F, = AT) (F, - \T) - 4 G2 cosz%]izo (207
2
k=1, ,ﬂ2—1
and
(F, -AT) (F, -\T) +G [F, -AT+F, -A1] = 0 (208)

The eigenvectors will follow just as in the one-dimensional case. Since by
assumption F;,F, and 6 commute, the eigenvalues of & will be the roots of

the equation

Aoy A on) -4 (%2 cos2 TR o
) ] ] nz
kzl:'.-anz-l
> (209)
j=1,"+*,N

J
F F F F
Aoy oy eag (AT SreaToa] =0

The more interesting case of non-commuting F1 F, where

A,+B B A,+B B
\ \
BA \ B A A
N \ 0 \\1 'O
- AN \ - A \
Fl‘ NN \ ,F2 \\ 2\ .
\ \ \ \
0 " B 0N N B
AN RN
B A,+B B A, +B
C
C
G = \
\0
0 \
\
C

(210)
has up to the present resisted all efforts toward its diagonalization.
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2. Circulant Matrices

(i) Simple Asymmetric

Here we consider t

(211)

in which the A, are N, XN, -matrices.
The similarity transformation U, = UN2 ® INl , With UNz given by eq. (124),

reduces A to the form

-1 = dji N
U, AU, =diag (A, A4,, A (212)

v -1)

where

Z A 277rJ;r=0,"',N2*1 (213)
i=o0
Further reductions will depend on the nature of A i If for instance all Aj
commute then the transformation S = I, ® S; —where SNl brings the Aj
2 1

simultaneously to diagonal form — will completely diagonalize A:

-1 q7-1 = di . e
ST U, AU, S=diag (A, Ay, AN2_1'N1) (214)
in which
2‘1 ' kIl,"',Nl
A= Z >\Aj el 27rj | (215)
rk K N ’
i=o0 2 r:O,"',N2-1

The eigenvectors are the columns of the matrix U, ®S,
2 1

The special case in which the matrices A, are circulant is of particular
2

interest: the matrix S is then the UN of eq. (124) and the eigenvalues are
1

N‘l

E 27Tk’£ 277rj (216)
j=0 l N2
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The result in eq. (216) remains valid when the A’. 4 become arbitrary matrices
since the diagonalizing transformation does not depend on the matric elements

of A.

(ii) Doubly Alternating Asymmetric

The matrix to be considered here is
Ag A, "'A2n2—1
A= 217

cyc.

We have already used this notation in eq. (142). Here the A's and B's are

N, XN, -matrices. We define the similarity transformation P, = P2n2 ® INl

with P,  given by eq. (143). Then
2
A A
PlaAP = (218)
A  AM

where A () are the generalized simple circulants

N
A(l) = (AO A2 U A2n2-2)cyc.
A(2) = (Al A3 .. A2n2_l)cyc_ g |
(219)
A(s) = (Bl B3 T B2n2-1)cyc.
A(4) = (Bo Bz .. anz—z)cyc, )
We apply now on eq. (218) the similarity transformation U, =1, @ U,
where U, is as in eq. (212). The result will be
K K@
U, PlaP, U = (220)
K3 K@
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where K(7) is the block-diagonal form of A(*), r =1, 2, 3, 4. A further permuta-
tion P, = Q,, I, with Q,, as in eq. (137), brings the matrix in eq. (220) to
2 1 2

the form

P1U PAP, U, P =diag Hy H,, ..., an ) (221)

The matrices H, are given by

KD K

H - (222)

K‘((3) Kl£4)

and K{*), r=1,---,4,k = 0,---,n, - 1is the k th block of K(*), similar in
form to Ak of eq. (213).

To reduce the Hk we need at this point to know the commutation properties
of the A's and B's. Assume first that all these matrices commute: then, if Uy

1
denotes their common diagonalizing matrix, we obtain the matrix H;

A(kl) A2
B, = (I, ol )l T el ) = (223)

where A{") is the diagonal form of K(*). Now, the permutation P, defined in
1

eq. (137), when applied on H; leads to the matrix
-1 [} — .
P2N1 Hk PZNI - dlag (Jkl’ sz y 20T ’JkNl) (224)
where

1
MDA =0,..., n,-1
Jur = (225)
3 4 —
}\(kr) >\§(r) r=1,..., N,

w~
|
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Finally the eigenvalues of the original matrix A are

2

k:O,...,nz-l; r:l,...,N1

(D 4 \H MDD _ )2
+ _Akr r kr kr 2 3
Akr - e < 2 + >\(kr) K(kr) (226)

The eigenvectors are the columns of the product of the various transformations
employed.

We return now to the original matrix A and assume that not all of the A's
and B's commute. For simplicity we shall assume that A, A,, - -, A2n2-1

coincide with B, B,, " and all are simble circulant matrices, while A,

! an2-1

and B, are alternating circulant of the following type:

a Ay Ay - Aonl-x

AO:
AONl'l’B Ay Ay - Aonl-z
cyec.
B Ay Ay - AONl-l
B, =
A0N1-1 o Ay Ay - Aole eve. (227)

Let us denote by A, the generalized simple circulant

8, = (‘°+B°,A1, A,,,~-'A2n2-> (226)

2

Then the matrix A can be written also as

Ao"Bo
_ ; S SIS S .
A= B+ —5—diag Iy, Iy, N, TN 2m,

(229)

Then the transformation U, of eq. (212), with N, = 2n, , reduces A, to block-
diagonal form, and on applying it on A it yields

(2n,-1)

U;' AU, =diag(a™®, A, ..., & Yy +) (230)
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in which
2n,-1 7k

2
+B 10
A S0 0 N, (231)
2 Lll !
=
Ao 'Bo 0
2 ~
\\ n2
0 0 Ao ‘Bo
2
J = (232)
A0 'Bo
2 N 0
o M -B 0 }“2
2
A\ v — k_\,—l
n n2

A further reduction of the matrix in eq. (230) is provided by the permutation

P, = P2n2 ® INl , with P2n2 given by eq. (137),
P! y-1 AU, P, =diag,, H, ..., H, ) (233)

where

ACK) AO - BO

2
H = (234)
A0 ~ Bo A(k+n2)
2
k=0, ..., n2—1

At this point we must assume N , = 2n; since no analytic solution is known for
the odd case. Hence, if this is so, we can write:
(235)

Ao - Bo a-p£ .
._2—: 5 diag (1, -1,..., 1, —1)2nl
On the other hand the A(k)'s are simple circulant and can be brought simultaneously

to diagonal form by the transformation U ., defined in eq. (124). If we apply on
1

H, the transformation I , @ U2n we obtain
1
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R . (k4ny)  (k4ny)
I, ®U2n1) ' Hk(Iz ®U2n1) :dlag(,\(ok)' A(lk)' Ao %, Ay 2+

0 L,
I
,a-8 ny (236)
2 I
1
I
n, 0
in which A(" contains the first n, eigenvalues of A(*) and A(l') the n, suc-
ceeding ones.
The similarity permutation Inl e P, , with
1 0 0 O
0 0 1 O
P, - (237
0 0 0 1
0 1 0 O
brings the matrix of eq. (236) to the form
. - A 0 1
(In1 ®p4) 1(12®U2"1) ' ﬂk(12®U2n1)(Inl ®p4) - dlag(ﬂ(k )' H(k )) (238)
where
RO 2-5 1 ACO -5 4
0 2 n, 1 n,
H(ko) - ; ﬂ(k1> = (239)
a=5 (kn,) a-5 A(k+n2)
—- Inl Al —2—Inl 0

We apply now the permutation P, , defined in eq. (137), on H(®> and KD to
1

obtain
-1 o Y o o .
P2“1 H1(< )p2“1 =diag ([((ko) , K(kl)’ o K(kn)l-l)
(240)
-1 g . . . .
Pl HDP,  =diag (KD KD, . KD )
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where

[0 -8 N a-BY\
j 2 jtny 2
(241)
(0) _— . 1)
Kkj - ’ K1(<j) -
a-f ey a-f (k)
2 i+ 2 j

In eq. (241) A}C’) is by definition the £ th eigenvalue of the matrix A(*) of
eq. (231). Again the entire reduction up to this point remains valid if the A)(&f)'s
become matrices. It is an easy matter now to write down the eigenvalues of A,
after solving the quadratic equations arising from KJ(O) and Kj(l ). The eigenvectors
will be the columns of the matrix U, P, U, QP S, where U, is defined in eq.
(230), P2 in eq. (233), U1 = (I2n2 U, ) and U2nl as in eq. (124), Q= (Inlnz ®P4),
P, = (I2n2 ® P2n1) and P2n1 as in eq. (137), and finally S = diag (S{3>, S{9’, ---,

s¢1)  _,), inwhich Sl((j') is a 2x 2-matrix diagonalizing Kl((‘j‘), r=0,1.
n ™M

(iii) Symmetric Circulants

As in the one-dimensional case, the results for the symmetric circulants
follow automatically from those for the asymmetric ones and therefore will not

be treated further here.

Part ITI. Three Dimensional Matrices

The results to be obtained in the following depend largely on those of Parts

I and II. Since we have shown in Part IT how partial diagonalizations can be ef-
fected in several cases involving arbitrary matrix elements, here we shall pro-
ceed diractly to the matrices of interest.

1. Continuants

(i) Simple Continuant

Let A be the N, N2N3 matrix
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Ty
AR 0
ANERN \
A= Voy N
Ny N
0 \\T
\
T 'S N,
with
F ¢ H K
NN RS
V0 0
¢ O K\\\\ AN
S = \ \\\ » T= NN
\ G \ K
O\G\F \\0 A \\H
N, \K N,

(See page 230 for Equation 243a)

(242)

(243)

All of the matrices above are generalized or ordinary simple continuant

matrices, and we can write down the eigenvalues and eigenvectors immediately:

\
A . =Ay 2B1 cos j<9+232 cos kcp+283 cos ry

ik
+ 4C1 cos jd cos kg + 4C; cos jO cos ry + 4C, cos kg cos ry

+ 8D1 cos j& cos kg cos ry

j=1,..., N3 k=1,...,N;5 r=1,...,N, J

This result remains valid if A, B,, C, and D, become arbitrary matrices.

229

(244)



£v3)
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The eigenvectors of A are the columns of the matrix TNz ® 'l‘N3 oT; ,
1

where T, are given by eq. (12).

3

(ii) Alternating Continuant

The matrix to be considered here is of the form

S1 T\
\
T\ S, \ 0
\ \
AN (245)
A= \ \ \
AN \T
v\
0 VN
\
\ \
T S,
N2
where
Sl; N2 = 2n2 +1
S, = (246)
Sz’ N2 = 2n2
Also
F, G\ F, G\
N N\
¢ F, ~ 0 ¢ F,
N SNooov N i 4
= AN =
51 \\G"Sz \\\\\GJ]
AN N ! 0
\ \ /
\ \
\ AN \ \
O G Fl G Fll
. ",
Fl; N3:2n3+1 Fz; N3:2n3+1
F' = S (248)
F2, N3:2n3 Fl; N3:2n3
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and ‘A, B, A, B \
N N\
AN
Bl A2 N . 0 B1 Al \ \ 0

NN T NN
AN B \ \
\ 1 1
0 \ N 0 \ \
\ N \ N\ /
B, A B, A /
Al’ N1 = 2n1 + 1 A2, Nl = 2n1 + 1
A' = : A" = (250)
A N, - 2n A N, = 2n

The matrices T and G are as in eq. (243).

For simplicity we shall choose N, = 2n,, N, = 2n, and N, = 2n,. All
other possible choices lead to soluble cases and the procedure to be followed is
similar to the one used below.

First note that (S,, S,) and (F,, F,) are pairs of non-commuting matrices.

We proceed as in the two-dimensional case, and apply successively the trans-

formations T, P, ,

-1 o1 P. - di L, ..., Q 251
P, T, AT, P, iag (Q,, @, n2) (251)
where
T, =Ty, © Lol P, - (P2n2 oLy Yo Iy (252)
with T2n2, P2n2 as in eq. (178),
S, -8
1 2
Ak 2
253
Qk = ( )
S; -8, A
2 2n2 k+1
and
S, +8

(254

A = 12 2+2Tcoskcp; %)
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Recalling the definitions of the various matrices in eq. (254), it is easily

seen that the Ay 's are generalized continuants the matrix elements of which are

(Fl +F,
2

n)

Dog = + 2H cos kcp) 8og * (G + 2K cos ko) (8, q41 + 2

p.q-1) (255)

and

S, -8, _diag (Fl -F, F -F, F

, - pee., L 2 _ 1t 2) (256)
2 2 2 2/,

We apply now successively the transformations T,=(, oT, )oI, and
2 "3 ny
P, = (Izn2 ®P2n3) oI,

eq. (251) to obtain

—with T, asineq.(12) and P, asineq. (33)—on
1 n3 n3

p P! P =di , R ) (257)
T,P,T,P) AT,P, T, P, =diag (Q,. Q, n2.2n3)
in which
F1 - Fz
Akr 2
= (258)
ri Fl - F2
2 A2n2'k+1.2n3‘r+l
and
F, + F,
Ag = 5 + 2H cos 49 + 2 [G + 2K cos £9] cos my
(259)
= « s oe M = 1, « o ey 2 ; - K
£=1, ) 2n2 m n, Y 2n3 1

Again we observe that the A £ of eq. (258) are continuants with the elements

Al + A2
(Afndoq = —+ 2B, cos 49 + 2 [B; + 2C; cos L] cosmf ¢ 5+

+ {B, +2C, cos 49 + 2[C; + 2D, cos {p] cos my} (3, g1 * 8 )

p.q~1

p!qzlv"'vznl (260)
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and

F, - F, (A, - A

= di L S 261
iag \—5 5 5 )zn (261)

3
o d
1
>

>

g
|

>

-

If we apply on eq. (257) the successive transformations T, = (I, oI, Yo T, ,
n3 "

P, = (I

oI, YoP, ,with T, and P, asineq.'s (12) and (33) respectively,
1 2n2 2n3 2nl 2n1 2n1
we get
-1 R
(T,P, TP, T, P AT,P,T,P, TP, =diag (Q;;,9Q,, -+ - Qn2,2n3.2n1) (262)
where
A Al - A,
krj 2
Q. .= (263)
krj A -A
1 2 A
2 2n2'k+1.2n3‘r+1,2n1‘j +1
and
A+ A
Ap = + 2B, cos né + 2B, cos L¢ + 2B, cos my

+4C, cos nb cos Lg + 4C, cos nb cos m) +4C; cosfpcosmy

+ 8D, cos nb cos 19 cos my

o

7
l,...,2n, m=1,...2n,5, n=1,..., 2n; 9:-2—nl—+—i-(264)

It is easy now to find the eigenvalues of ¢ Krj? provided that all capital

letters in eq. (263) and (264) denote either scalars or diagonal matrices. Thus

+ - + - \2 2
¥ :’ujkr t Hikr s Hike = Hjxe N A -A, (265)
jkr 2 — 2""' y p)

j:l,...,2nl; k:l,...
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in which 4, is identical with A, . of eq. (264) and 1, has the same form as
#}Lk, but each cosine enters with a (-) sign.

(iii) A Simple Variant

Let
S+T T
AN
T S N\ 0
\ NN
A= NN N (266)
N
S T
N
0 AN
T S+T
where
F.-6 G H+K K
\ N
¢ F N O K H 0
N AN \\ * A \\
_ N N . = A N
§= N F ‘6 P T { N “u \x
o A
\ \ 0 N
G F. ¥, K H+KN3
A Bl Bl B3 +C3 C3\ Bz +Cl Cl\ o
B, AN 0 C;, By o G BN\
\ AN \ \ \\ \ \\ \
F = \ \\ N G = N \\ N c H= \ v 267
= \ \ ; \ ; o O B. C ( )
0\ A B o N 3G \ 3
\ \
B, A.B, ¥, €, B3+G N, ¢ B,+ G N

Just as for the case (i) above the eigenvalues can be written down im-

mediately:
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’\jkr - A4 2131 cos jJ0 + 282 cos ko + 2B3 cos ry
+4C, cos jO cos kg + 4C; cos j& cos 1y +4C, cos kg cos ry

+ 8D, cos j& cos kg cos ry

7T' -7T. — . l_ . — . p—
QZT\J-;’ (P_N—z, Yo=—; ]_0,...,N1—1, k_O,...,Nz—l, r=0,...,N_ -1

(268)
The eigenvectors are the columns of the matrix T, o T, T , with T, given
2 3 1 i

by eq. (65).

2. Circulants

(i) Simple Asymmetric

It is clear from the previous treatment that general results can be
written down for arbitrary three-dimensional circulants, the elements and sub-
elements of which are also arbitrary circulants. For the sake of simplicity we

restrict the following discussion to the simpler and more frequently met matrix

wn
=]
4

A- NIRRT (269)
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in which

| F 6 ¢ H K L )
D \ NN
G > NERY LN MNO
AN N NN \
S: AN \ H T- \ \
AN AYEIEAN
0 . 6 Moy K
0 \
o AN
- G ¢ F K L‘H
N3 N3
A B B, B, C, c,
\ \ \
B1 \ \\O C4 \ A
ANEERN \ \ \\ \\ 270
_ \ \ .
F-= \ \\ \ 1 6= \ \ \ ( )
AN \B NN
0 \ \ 1 0 N \ CS
\ \ \ \
B, B, A/, C, C, B,
1 N,
B, C, G, c, D, D, ¢, D, D,
NN A NN
C2 \ AN D3 \ \\ D2 \ \
NN VN AR
H- N \ v \ \ \
= 0 \ \ C K: \ \\ \ M L: \ \ ])4
AU | N D, N
AN N \ \\
c, ¢, B, L, D, b, (:SN1 D, D, C "

We assume A to have ordinary symmetry* (in the elements A, B,C,D) and
therefore the transposed block matrices in eq. (269) and eq. (270) are transposed

as ordinary matrices also. This means, for instance, that

e

\
Y (211)

=0

*The asymmetry in the title of this section refers to the form of A as a block matrix.

237



matrices.

The eigenvalues of A are

Ajkr = A+ 2B1 cos jb& + 82 eik® 4 82 e k@ | B3 e ity | B3 eitd | C1 ei (J0+kP)
RO I TG S L I IC S LAY o i (O+r) | €, TGO
£ C, eTiGOTr) L E i (87 g @H (RO L T T ON)

LG, et (KT L B e (k) | P i (IOTKPH) | IO 4

+ D, e 1GOOI L @i (OTKPHY) | i (TIFHPHEY) 4 D, eii87kOmr)

+ D, ol (§ 0¥kP=r) +ﬁ4 e i (i0tkP~ 1Y) (272)
where
27, 27 _ 27
e R
1 2 3
(273)
i =0, N -1; k=0,...,N -1; r=0,...,N -1

The eigenvalues Ajkr in eq. (272) were written under the assumption that
A, B1 s e e ey l)4 were matrices. If we assume these to be either diagonal

or symmetric, we obtain the simplified expression

J\jkr = A4 2Bl cos jO + 2B2 cos ko + 2B3 cos ry ¢
+2C; cos (j @ + ko) + 2C, cos (jO - ko) + 2C; cos (i6 + rY) +
+2C, cos (O -~ ry) + 2C; cos (kg + ry) + 2C6 cos (kg - ) +

+ 2D, cos (j 6 +ko + ry) + 2D, cos (i 6 -ko + ry) + 2D, cos (36 -kop =r1y)

. (274)
+ 2[)4 cos (j O ; kg - 1)

with 6, ¢, ¢y and j, k, r as in eq. (273).

The eigenvectors will be the columns of the matrix U, @ Uy @ Uy, with
2 3 1

U's as in eq. (124).
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il) Alternating Asymmetric

The matrix considered here is of the form

A= A N, =2n (275)

FF 6 6 F, ¢
N 0
G F, ¢ F \0©
\ AR \ \ \\
_ _ 276
0 \ \ G N
NN v\ 6
NN v
6 G F, 6 G F
N N3
A1 l?'l Bl A2 Bl Bl
N0
B, A \\ B, A \\ 0
\ \ NN
F, = NN ; F, = VoA ; N, =2n 277)
NN v\
\ B \ B
NN o\ \ ™
\ N
B1 B1 A2 N B1 Bl A1 Nl

F, and F, alternate regularly along the main diagonals of S, 82 and so do A

and A, in F1 ,» F,. The matrices T and G are as defined in eq. (270).

We remark that the matrices S,, F 1 do not commute with Sz, F,, respectively.

To diagonalize A we put it in the form

. 1 2
A_Ao+dlag< 5 y - 2 vt T

S -S, S, -8 sl_sz>
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in which +1/2 (8, - 8,) alternate regularly and

(279)

The transformation U, which reduces A to block-diagonal form is given by

U, = (UN2 ® IN3) ® INl (280)

with U asin eq. (124). Then we can write
2

U1 AU, = diag (A, &, ..., a7y ] (281)
where
ACO) - % (S, +S,) + Teik? 4 T eTik?
k=0,...,2n,-1; o=m/n, ' (282)
and
0
J= (283)
J, o
with
Jy =1, ®% (S, -8 (284)

A further reduction is provided by the permutation
P,=(By oL) 0Ty (285)
with PN2 given in eq. (137) (for n =n,). The result of this permutation is

, P2)—1 AU, P, =diag (H, H...., H , ) (286)
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in which
1
Al 7(Sl—Sz)
H - : i k=0,...,n -1 (287)

1 (k+n,)
E(Sl - Sz) A 2

Now, the matrix 1/2 (S, - 8,) is of the form

F, -F F
1 Y 172 2 1 2
5(51 -8,) =diag ( 3 R 5 > (288)

y -

where + 1/2 (F, - F,) alternate regularly, while the D are an generalized

simple circulants. Therefore is we apply on H,_ the transformation V,,
V,=(1,0 UN3) ® INl (289)
with U, as in eq. (124), we obtain
3

kt+
ViUH, V, = diag (A, AR, Agkn2), A2 (290)

in which /\(o'ﬁ) contains the first n, (generalized) eigenvalues of AD ang A{’ﬁ)

the n, succeeding ones. The matrix J ' is given by

3
0
Ji

J = (291)

J; 0

J;
with

, 1 292
‘]1 =In3 ®E (Fl —Fz) ( )

The similarity transformation V, = In3 ® P, , with P, as defined in eq. (237),

brings the matrix in eq. (290) to the form
- = di 0 g 293
vV, V) 1H V,V,=diag (Hk , Hk ) (293)
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i where

A<k> ) \ / I
- . 1) _
(U) (k*n OB = (k*n,) (294)
J; A 2 JiooA 2
: We apply now the permutation
P-P,_ ol (295)

3 2n3 1

with P, as in eq. (137), on H{®) and H(!):
ng k k

-1 0 _ : 0 0 0
PSUH(O P, = diag (K, K(D, - -, KD })
(296)
- _ 1
PPHDP, =diag (K(3, KD, ..o, K,fns)_l
in which
Lk _F) F. -F,)
Akr 5( 1~ "2 k, r+n (
0) _ .
K(% = ;K = (297)
—(F - F) Ak+n2.l‘+n3 2(F F) Ak+n2,r
k =0, ,n2_l, r =0, ,n3-1
and where
1 ) ~ . .
Aoa =7 (Fy + F) + Helt? o Heip? 4 Gelal
+ G eTiad | K ei(POrad) | K ”i (PP*a¥)
+ L ei(p9ad) [ oi(p0a¥) (298)
with
cp:w/n2; ¢J:77/n3; p:O,...,2n2—1; q:O,---,203—1

The matrices A, are again circulant, while

- - -A
(F -F)) = dlag<A1 A A-h _L_2_> (299)

y - s o 0 e,

2 2 2
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In which +1/2 (A, - A, ) alternate regularly. Then if we apply on K{? and K(1

the transformation

Uy=1,00,, (300)

we obtain

U KO U, =diag (AD AD AL AL Ly (301)

k+n2,r+n3 k+n2,r+n3

where A l()3) contains the n, first eigenvalues of A _, and I\g) the n, succeeding

1

ones. Also

W= ;W :IHIQ%-(AI - A) (302)

The similarity permutation vV, = I oP o with P4 as in eq. (237), brings

"

the matrix of eq. (301) to the form

- _ . 0 0

(U3 V3) 1 Kl(((r’) U3 V, = diag (Xl(”), Yf{r)) (303)
in which
0 1

AL W, ALD W,

X(0) = YO - (304)
kr r
w1 A£132,r+n3 wl Ak+n2.r+n3

Applying the permutation P, defined in eq. (137), we finally obtain
1

-1 (0) = di (x,0) (x,0) | (x.0)
P2n1 xkr l)2nl = diag (QOkr ’ Qlk, ! ? in“lkr)

(305)

-1 (0) - 1 (Yvo) (y'o) . .. (y’o)
P2nl Ykr p2nl = diag (901” ! glkr ’ ’ in—lk),
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in which

/ 1 1, A
. Ajkr "Z—(A.l —A2) \ Aj+n1kr 5\[\1 —A2)
AL ISR
jkr jkr
E(AI -4) Aj+nlk+n2r+n3 5(’\ -A) Ajk+n2r+n3

j:O,...,n_l; k:O,...,n

1 -1; r=0,...,n,-1 (306)

2 3

and the expressions M., coincide with the ones given in eq. (272), if A there is

replaced by 1/2 (A, +A,).

The same procedure gives for K{!) the matrices

1 1
Ajkr+n3 E(Al _AZ) Aj+nlkr+n3 5(A1 -AZ)

Q(x.1) _ . Uy - (307)
jkr jkr

1 1
—2—(A1 —A2) Aj+nl ktn,r ?(Al -A2) Aik"“n r

2

This is the reduction required. It is simple now to find the eigenvalues if the

matrices A,, ..., B, are diagonal or can be simultaneously diagonalized.
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